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Abstract
Diabetic ketoacidosis (DKA) is defined as an acute 
metabolic disorder, which is characterized by an increased 
presence of circulating ketones, and the development 
of ketoacidosis in the presence of hyperglycemia. 
This syndrome occurs as a result of insulin deficiency. 
Patients can be dramatically ill, however, with aggressive 
treatment, most patients recover rapidly. Despite being 
a low-risk condition, the development of acidosis, is one 
of the admission criteria to the intensive care unit (ICU) 
for these patients, in order to provide close monitoring, 
and recognize complications that could result from the 
use of aggressive therapy, such as continuous infusions 
if insulin. In some institutions, DKA is treated in the 
emergency department and general medical/surgical 
wards to avoid ICU overcrowding.

Key words: Diabetic ketoacidosis; Diabetes; Hypero-
smolar non-ketotic state; Clinical outcomes; Serum 
ketones

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Diabetic ketoacidosis is a complication for 
some patients with insulin-dependent diabetes mellitus 
as well as for non-insulin dependent. It is treated 
commonly in the intensive care unit (ICU), even though 
clinical data from many studies support management 
in regular (medical/surgical) wards, avoiding expensive 
critical care unit costs and preventing bed crisis in these 
higher level of care units for sicker patients. Once the 
patient is treated, adequate follow up and education is 
mandatory. Noncompliance remains the primary concern 
for repeated admissions.
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INTRODUCTION
Patients with diabetes mellitus (DM) have health care 
costs 2.3 times higher than others without this dia
gnosis[1]. In a prevalencebased study, by the American 
Diabetes Association, in the United States in 2012, 
the total cost for diagnosed DM was $245 billion 
United States dollars, and of it, $176 billion was used 
for direct medical care costs[1]. In addition, and even 
more concerning, is the fact that hospitalizations for 
patients with DM have being increasing[2]. The National 
Surveillance of Diabetes Public Health Resources, 
reported that diabetic ketoacidosis (DKA) admissions 
increased from 80000/year in 1988 to 140000/year in 
2009[2]. 

DKA causes an acute metabolic disorder, which is 
primarily characterized by an increased presence of 
circulating ketone bodies, and the development of severe 
ketoacidosis in the presence of prolonged uncontrolled 
hyperglycemia, usually due to insulin deficiency[3]. It is 
more commonly seen in patients with insulindependent 
diabetes mellitus (IDDM), especially among children and 
young adults. Occasionally, patients with insulin resistant 
DM can present this complication; especially those that 
are noncompliant with insulin therapy or who present 
severe infection[3]. DKA has arbitrarily been classified 
by some as mild, moderate and severe, according to 
the initial diagnostic criteria (which includes plasma 
glucose, arterial pH, serum bicarbonate, urine and 
serum ketones, serum osmolality and anion gap; and 
the alteration in the mental status)[4].

EPIDEMIOLOGY
In 2012, 29.1 million Americans or 9.3% of the popu
lation were estimated to suffer from DM, according to 
the American Diabetes Association and the Center for 
Disease Control and Prevention[2]. Of them, approxi
mately 1.25 million American children and adults have 
IDDM. This clinical condition has a cumulative incidence 
of 1.4 million Americans per year and it remains the 7th 
leading cause of death in the United States since 2010[2]. 
As noted above, the number of cases of DKA has steadily 
increased over the past 2 decades[2,3]. In one study in 
the United States, DKA presentations to the emergency 
department (ED) increased 35% from 1996 to 2006[3]. 
When compared to other countries like England, Austria 
and Germany, the United States has the highest rates of 
DKA in children with IDDM[5]. Mortality rates for patients 
with hyperglycemic syndromes (DKA and hyperosmolar 
nonketotic states) have been reported as 0.02% in 
patients with diabetes who are 45 years or younger, 

and 0.014% among older adults[6]. In some studies, 
the average length of stay in the hospital for patients 
with DKA has decreased from 5.7 to 3.4 d, being longer 
for patients categorized in the “severe” group[2,7]. In 
the authors’ experience, some patients can even be 
discharged within 23 h of hospital admission despite an 
initial severe acidemia.

IS DKA A CRITERION FOR ICU 
ADMISSION?
In many institutions, and for decades, DKA has been 
routinely treated in ICU environments, including recom
mendations by the American Diabetes Association 
guidelines for DKA treatment[3,4,79]. The primary reason 
for these level of care requirements, has been the 
presence of severe metabolic acidosis, even if patients 
are grouped as mild or moderate in severity[10]. Frequent 
blood glucose monitoring, the need for intravenous insulin 
infusions, and the requirement of frequent vital signs is 
cited as the hospital structural requirements for this ICU 
level of care[11]. However, several studies have shown that 
DKA can be safely treated in the ED or even in medical 
wards (Table 1)[1217]. By taking this lower level of care 
approach, we can potentially avoid ICU hospitalization 
rate and higher costs, bed overcrowding and reserving 
the beds for patients who present complications such 
as hypotension, coma, acute myocardial ischemia, or 
those with several comorbidities (i.e., endstage renal 
disease, congestive heart failure) and anyone categorized 
as suffering severe DKA[12,18,19]. In some observational 
studies DKA patients admitted to the ICU have a shorter 
length of stay when compared to nondiabetic mellitus 
ICU patients[20,21]. A recent retrospective cohort study of 
156, 842 hospitalizations among 94 acutecare hospitals, 
analyzed the adjusted cost of hospitalizations in lower and 
higher ICU utilizations groups, and concluded that the 
overuse of ICU only increases the cost and the utilization 
of invasive procedures but with no improvement in 
hospital mortality[22].

In a prospective, randomized clinical trial in India, 
Karoli and coworkers reported that once the DKA patient 
is evaluated in the ED, and categorized in the severity 
score, direct admission to a regular ward provided no 
additional mortality and the only complication noted was 
hypoglycemia. Other groups have used other classifi
cations to allocate resources for patients with DKA[15]. In 
a retrospective study, Marinac and Mesa, using labora
tory criteria (serum bicarbonate, anion gap, base excess 
and serum osmolality), and diastolic blood pressure, 
patients were grouped in 5 grades (Grade 0  IV)[19]. 
ICU admission was recommended only for those who 
had grade IV DKA[19] (Table 2).

TREATMENT OPTIONS IN THE ED OR 
ICU
The treatment of acute DKA includes restoration of fluid 
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deficits in the first 24 to 36 h, electrolyte replacement 
and insulin therapy, which is administered slowly to 

decreased plasma glucose[23,24]. As noted above, a few 
randomized, open label trials have proved good out
come and noninferiority for patients who are managed 
on regular medical/surgical wards while using with rapid 
acting insulin, aspart or lispro[13,15,17,2529].

By establishing a rapid diagnosis and starting treat
ment in the ED, clinicians can help patients to decrease 
their costs and hospital stay. 

The primary issue in patients with DKA remains 
the need for repeated hospital admissions. Non
compliance in these patients makes the outcome and 
prognosis worst. Indeed, medical noncompliance and 
adherence to the outpatient treatment is the most 
common precipitating factor leading to the development 
of moderatetosevere DKA, requiring ICU admission 
secondary to complications (i.e., cerebral edema, 
sepsis) and making the management in the ED and/
or ICU very complex[21,25,30]. Lifesupport care, such 

  Ref. Country Patients 
enrolled

Site of 
management

Therapy used Outcome Length of stay

  Dunbar et al[12] Retrospective 
  study (January 1994 - March 1995)

United 
States

61 15: ICU
46: Regular 

floor

Not mentioned Mortality due to sepsis in 
only 1 patient with initial 

pH < 7.00

ICU: 2 d
Regular floor: Not 

mentioned
  Umpierrez et al[14]

  Prospective randomized open trial
United 
States

45 15: ICU
30: ED

ICU: Intravenous 
insulin drip

ED: 15 subcutaneous 
insulin aspart Q1H

ED: 15 subcutaneous 
insulin aspart Q2H

Hypoglycemic event 
presented in each group in 
only 1 patient per group.

No complications, no 
recurrence of ketoacidosis 

and no mortality

ICU: 4.5 ± 3 d
ED with SC Q1H: 3.4 ± 3 d
ED with SC Q2H 3.9 ± 3 d

  Karoli et al[15]

  Prospective randomized open trial
  (January 2009 - June 2010)

India 50 25: ICU
25: ED

ICU: 25 intravenous 
regular insulin

ED: 25 subcutaneous 
insulin lispro

Hypoglycemic event 
presented, 2 patients 

in the ICU group and 1 
patient in the ED group. 

No complications, no 
recurrence of ketoacidosis 

and no mortality

ICU: 6.6 ± 1.5 d
ED: 6.0 ± 1.2 d

  Ersöz et al[16]

  Prospective randomized open trial
Turkey 20 20: ICU ICU: 10 intravenous 

regular insulin
ICU: 10 

subcutaneous 
insulin lispro

No need to switch to 
IV regular insulin, no 
hypoglycemic events, 
no complications, no 

recurrence of ketoacidosis 
and no mortality

Not mentioned

  Umpierrez et al[18]

  Prospective randomized open trial
United 
States

20 10: ICU
10: MW

ICU: 20 intravenous 
regular insulin

IMU: 10 
subcutaneous 
insulin lispro

Regular floor: 10 
subcutaneous 
insulin lispro

Hypoglycemic event 
presented in each group in 
only 1 patient per group, 

no complications, np 
recurrence of ketoacidosis 

and no mortality

IMU and Regular floor: 4 
± 2 d

ICU: 4 ±  1 d

  Sotiropoulos et al[25]

  Prospective study 
  (June 2007 - May 31 2008) 

Greece 21 21: ED ED: 21 intravenous 
regular insulin

Myocardial infarction in 
only 1 patient - Mortality 

4.7%

Not mentioned 

  Della Manna et al[26]

  Controlled clinical trial 
   (June 2001 - June 2003) 

Brazil 60 3: ICU
57: ED

ICU: 3 intravenous 
regular insulin

ED: 27 intravenous 
regular insulin

ED: 30 subcutaneous 
insulin lispro

Hypoglycemic event on 10 
patients, 6 patients due to 

regular insulin and 4 due to 
lispro; no complications, no 
recurrence of ketoacidosis 

and no mortality

Not mentioned

Table 1  Clinical trials comparing care in the intensive care unit vs  the emergency department or medical ward for patients with 
diabetic ketoacidosis

IMU: Intermediate care unit; SC: Subcutaneous; Q1H: Every hour; Q2H: Every two hours; ICU: Intensive care unit; ED: Emergency department; MW: 
Medical ward; DKA: Diabetic ketoacidosis.

  Myocardial infarction
  Congestive heart failure
  Acute renal failure
  Acute respiratory failure
  Altered mental status
  Coma
  Shock
  Hypothermia
  Sepsis
  Pancreatitis
  Gastrointestinal bleeding
  Uncontrolled hypertension
  End stage renal disease
  Hyperkalemia

Table 2  List of conditions requiring admission of patients 
with diabetic ketoacidosis in the intensive care unit

Mendez Y et al . Admission criterion for DKA
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as mechanical ventilation, vasopressors, intravenous 
antibiotic therapy and mortality rates are higher in these 
patients, when compared to patients not requiring these 
interventions[30].

CONCLUSION
The benefit of ICU level of care for patients with DKA 
rather than regular medical/surgical wards is not well 
established for patients with mildtomoderate DKA. 
Many studies suggest the utilization of the ED or the 
regular (medical/surgical) wards in the management 
of these patients. There is significant costbenefit in 
managing DKA in the ED and regular wards instead of 
the ICU, where only patients that require lifesupportive 
intervention should go. Once patients are discharged 
from the hospital adequate follow up is necessary to 
avoid readmissions and assure compliance.
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Abstract
Brain integrity and cognitive aptitude are often impaired 

in patients with diabetes mellitus, presumably a 
result of the metabolic complications inherent to the 
disease. However, an increasing body of evidence has 
demonstrated the central role of insulin-like growth 
factor 1 (IGF1) and its relation to sex hormones in 
many neuroprotective processes. Both male and female 
patients with diabetes display abnormal IGF1 and sex-
hormone levels but the comparison of these fluctuations 
is seldom a topic of interest. It is interesting to note that 
both IGF1 and sex hormones have the ability to regulate 
phosphoinositide 3-kinase-Akt and mitogen-activated 
protein kinases-extracellular signal-related kinase 
signaling cascades in animal and cell culture models 
of neuroprotection. Additionally, there is considerable 
evidence demonstrating the neuroprotective coupling of 
IGF1 and estrogen. Androgens have also been implicated 
in many neuroprotective processes that operate on similar 
signaling cascades as the estrogen-IGF1 relation. Yet, 
androgens have not been directly linked to the brain IGF1 
system and neuroprotection. Despite the sex-specific 
variations in brain integrity and hormone levels observed 
in diabetic patients, the IGF1-sex hormone relation in 
neuroprotection has yet to be fully substantiated in 
experimental models of diabetes. Taken together, there 
is a clear need for the comprehensive analysis of sex 
differences on brain integrity of diabetic patients and the 
relationship between IGF1 and sex hormones that may 
influence brain-health outcomes. As such, this review 
will briefly outline the basic relation of diabetes and IGF1 
and its role in neuroprotection. We will also consider 
the findings on sex hormones and diabetes as a basis 
for separately analyzing males and females to identify 
possible hormone-induced brain abnormalities. Finally, 
we will introduce the neuroprotective interplay of IGF1 
and estrogen and how androgen-derived neuroprotection 
operates through similar signaling cascades. Future 
research on both neuroprotection and diabetes should 
include androgens into the interplay of IGF1 and sex 
hormones.

Key words: Diabetes; Androgens; Estrogen; Insulin; 
Insulin-like growth factor 1; Neuroprotection; Brain 
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Core tip: Insulin-like growth factor 1 (IGF1), estrogen, 
and androgens are known to have neuroprotective 
properties. Fluctuations in these hormones is observed 
in patients with diabetes, varies with sex, and may 
contribute to abnormalities in brain integrity and cogni-
tive impairment typical of the disease. While the neuro-
protective coupling of estrogen and IGF1 has been 
studied extensively, little research has focused similarly 
on androgens. Furthermore, research investigating 
the IGF1-sex hormones relation to diabetes and brain-
health outcomes is minimal. One avenue of approach to 
extend this literature may be to examine sex differences 
by comparison of these hormone levels, brain integrity, 
and cognitive aptitude.
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INTRODUCTION
Diabetes mellitus is a metabolic syndrome known 
for impaired insulin production. This condition is asso-
ciated with an abundance of sequelae including car-
diovascular disease[1,2], brain atrophy[3,4], and more 
recently, Alzheimer’s disease[5-7]. Over the past thirty 
years, researchers have established strong evidence 
supporting a link between patients with diabetes and 
subsequent cognitive impairments and abnormalities in 
brain integrity. 

While meta-analyses have found inconsistencies in 
the specifics of the literature[8-10], general trends point 
to cognitive impairments and abnormalities in related 
structural and functional brain areas. For example, 
patients with type 1 diabetes (T1D) are frequently 
found to have decreased psychomotor speed, mental 
flexibility, and IQ scores[8,11-13]. T1D patients also often 
show reductions in the volume of regional gray matter 
in areas such as the prefrontal cortex, hippocampus, 
and thalamus[12,14,15]. On the other hand, affected 
skills in type 2 diabetes (T2D) are largely executive 
function, memory, and information processing[16,17]. 
Neuroimaging studies done on T2D patients indicate 
global brain atrophy and microstructural changes[4,7,9,18], 
while findings regarding white matter hyperintensities 
are mixed[3].

In both T1D and T2D these decrements are con
sidered mild across most age groups[8,11,19]. The severity 
of cognitive impairments and brain abnormalities are 
correlated with age of onset in T1D[11] and duration 

of the disease in T2D[20,21]. Age is also a risk factor as 
deficits in learning and memory have been reported to 
worsen considerably in T2D patients above 65 years of 
age[22]. Findings suggest the decreased brain volume 
in patients with T2D is correlated with increased insulin 
resistance[23], and both brain atrophy and microstructural 
changes are associated with impaired cognitive pe-
rformance[18,20]. 

These data lend support to the idea that brain 
integrity is compromised in patients with both T1D 
and T2D, but also emphasize the need to integrate 
peripheral biomarkers associated with neuroprotection 
into diabetes research in humans. Various hormones 
altered as a result of diabetes have been recognized 
as neuroprotective, including insulin-like growth factor 
1 (IGF1) and sex hormones. Research has revealed 
differences in the serum levels of IGF1 and gonadal 
hormones in diabetic patients[24-27], with clear sex 
differences in the effects of androgens and estrogens on 
the brain in animal models[28]. 

There is currently a movement in biomedical re-
search to incorporate analyses of sex differences into 
studies[29-31]; however, studies on brain integrity of dia-
betic patients often fail to examine men and women 
separately. This is despite findings of sex-specific 
differences in regional brain volume between men and 
women[32-34]. For instance, DTI scans have also reported 
white matter hyperintensities are different in men 
and women diabetics[35]. Others have shown that, by 
combining the data of men and women, T2D patients 
had smaller gray matter volume with larger ventricular 
volume and white matter lesions compared to healthy 
controls. However, when the sexes were analyzed 
separately, the data for men failed to reach statistical 
significance[36]. 

Because sex hormones can act on similar molecular 
pathways as IGF1, and IGF1 is functionally related to 
insulin and diabetes, there is a need to further investigate 
how these hormones interact in the brains of diabetic 
patients. The relationship between estrogen and IGF1 
is the most extensively studied in the neuroprotection 
literature[37-39], but it has yet to expand experimentally 
into diabetes research. Furthermore, little attention 
has been paid to androgenIGF1 interactions, even in 
the animal literature, despite the similar mechanisms 
underlying estrogenic and androgenic neuroprotection.

DIABETES AND IGF1 RELATION
IGF1 has a hypoglycemic response similar to insulin 
and, in some circumstances, is capable of modulating 
insulin receptor (IR) activities. Research has demon
strated that low IGF1 is associated with T1D and 
T2D[40-42]. Moreover, genetic studies suggest decreased 
IGF1, due to a genetic polymorphism in the promoter 
region of the IGF1 gene, increases the risk of glucose 
intolerance and T2D[43]. 

On the other hand, T2D has also been correlated 
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with excessively high levels of IGF1. For example, 
people with acromegaly - a condition known for its 
overproduction of pituitary growth hormone - have both 
high levels of IGF1 and a greater risk of developing 
T2D[44]. These findings were corroborated by two large 
studies from Denmark (n = 3354) and Germany (n 
= 7777) which found U-shaped associations between 
IGF1 levels and the likelihood of developing insulin 
resistance and T2D[24,25]. Moreover, treatment with IGF1 
can improve glycemic control in patients with T1D and 
T2D[45,46], which may suggest an optimal range of IGF1 
for normal glycemic control.

Although IGF1 is synthesized in the brain, peripheral 
values cannot be used to accurately infer brain levels 
of IGF1 in humans as local synthesis of IGF1 in the 
brain appears not to correlate with the quantity of 
IGF1 receptors (IGF1R)[47-49]. Evidence from animal 
models suggest that brain atrophy and loss of DNA are 
prevented following injection of insulin and IGF1, but 
not insulin alone, into cerebrospinal fluid of mice[50]. 
Thus, proper systemic levels of IGF1 and its transport 
from the periphery into the brain is likely necessary for 
the maintenance of various cognitive processes[51].

Collectively, these data support the involvement of 
IGF1 in diabetes but also point to an “optimal range” of 
IGF1. Future research should examine the significance 
of an optimal peripheral range in the development 
and maintenance of diabetes and cognitive decline. 
Moreover, there is a need for data on the role of central 
vs peripheral IGF1 levels and the subsequent impact on 
cognitive impairment and brain atrophy.

THE IGF1 SYSTEM
Transportation
IGF1 is a polypeptide, structurally similar to insulin, 
that is released in response to growth hormones 
secreted by the anterior pituitary[52]. While synthesized 
predominantly by hepatocytes in the liver and released 
into general circulation, both paracrine and autocrine 
functions contribute through local tissue synthesis of 
IGF1. The concentration of IGF1 is greatest during 
perinatal development and decreases markedly into 
adulthood. IGF1R are expressed in nearly all neural cells 
of the CNS, being most highly expressed in the cortex, 
hippocampus, cerebellum, brainstem, hypothalamus, 
and spinal cord[53].

The blood brain barrier and blood-cerebrospinal 
fluid barrier are the two primary routes involved with 
transporting systemic IGF1 into the brain. Both barriers 
utilize lipoprotein receptor-related proteins along with 
IGF1R as transporters to enter the brain[54,55]. However, 
the bioavailability of IGF1 is largely determined by the 
amount of hormone bound to IGF binding proteins 
(IGFBPs). Most circulating IGF is bound by IGFBPs, 
which are proteins that control the distribution and 
functional capabilities of IGF1 throughout the body. 
Six different IGFBPs modulate the activity of IGFs via 
binding affinities exceeding that of its respective receptor 

and, thus, help regulate the amount of IGF1 that enters 
the brain[56]. 

Signaling pathways 
The role of IGF1 is dependent on its binding to insulin
like peptide receptors. The three most important include 
the IGF1R, IR, and a hybrid receptor formed from 
heterodimer α-β IR and IGF1R subunits[53,57]. These 
receptors are important to the functional efficacy of IGF1 
and have defined downstream molecular pathways. As 
part of the tyrosine kinase receptor family, activation 
of IGF1R leads to the signaling of either the mitogen
activated protein kinases-extracellular signal-related 
kinase (MAPKERK) or phosphoinositide 3kinase 
(PI3K)Akt pathways[53,57]. These pathways are involved 
in several important cellular processes including the 
regulation of gene transcription, apoptosis, oxidative 
stress, and cellular proliferation and differentiation. 

The affinity of IGF1 varies among the three rece
ptors with the highest affinity for IGF1R. Activation of 
the IGF1R is capable of directly stimulating the RASERK 
pathway, leading to the modulation of gene transcription 
by way of activating ETS-like transcription factor, 
ELK1[57]. The capacity of insulin-like peptide receptors to 
initiate downstream molecular activity is modified in part 
by the recruitment of insulin receptor substrate (IRS) 
scaffolding proteins[57-59]. This scaffolding helps adjust 
pathway choice following receptor phosphorylation. 
The result is activation of PI3KAkt and subsequent 
expression of downstream effectors, including glycogen 
synthase 3 kinase (GSK3β) and mammalian target of 
rapamycin[53,57,60]. 

Relationship to the insulin system
IGF1 acts primarily through binding to the IGF1R, but 
also shares with insulin the capacity to bind the IR and 
hybrid receptor[53,56,57]. Insulin is produced exclusively by 
β-cells of the pancreas and, hence, is strictly transported 
in the systemic circulation. The amount of insulin 
capable of entering the brain varies considerably[54,55]. 
Unlike IGF1, insulin appears not to be locally synthesized 
in adult brain cells[53,56]. Similar to IGF1, IR located 
on endothelial and epithelial cell membranes allow 
insulin to be transported into the brain from systemic 
circulation. IRs are concentrated mostly in the olfactory 
bulb, cerebral cortex, hypothalamus, hippocampus, and 
cerebellum[55]. The movement of systemic insulin into 
the brain is not controlled by binding proteins. 

Both insulin and IGF1 produced in the periphery 
contribute to varied physiological processes. Proper 
peripheral IGF1 activation is necessary for insulin 
secretion from the pancreas and, hence, is implicated 
in many facets of diabetes[61]. However, their functions 
differ once entering the brain. IGF1R are expressed 
at notably higher rates in the brain than the rate IGF1 
is synthesized. This differential suggests that active 
transport of IGF1 into the brain is required to furnish 
sufficient IGF1 for proper neuronal function[47-49]. For 
example, peripheral IGF1 supplies the brain with 
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information regarding body mass, is related to neural 
plasticity and cognitive processes, and attenuates cog-
nitive impairment induced by diabetes[51,62,63]. Deficien
cy of IGF1 can also lead to hippocampal atrophy and 
impaired learning[64]. Indeed, IGF1 in the brain is 
required for proper tissue growth in both the brain and 
periphery, as well as sufficient glucose regulation and 
insulin sensitivity[65,66].

Insulin in the periphery is wellknown for its role in 
glucose regulation and communication with the brain to 
maintain energy homeostasis. Similar to IGF1, insulin 
is involved in modifying BBB permeability in the brain[55] 
with T2D patients showing greater permeability of the 
BBB[67]. Insulin also acts on the PI3K and MAPK signaling 
cascades to enhance neuronal survival, plasticity, and 
subsequent cognitive processes[55,68,69]. With that said, 
insulin does not necessarily regulate glucose activity in 
neuronal cells after entering the brain. Rather, insulin 
modulates energy homeostasis through its actions at 
the level of the hypothalamus[70].

INTEGRATING SEX HORMONES INTO 
DIABETES AND IGF1
Diabetes is associated with imbalances in sex steroid 
hormone levels. This is not surprising as androgens 
and estrogens are known to play an important role in 
body composition[71] while maintaining glucose and 
lipid homeostasis[72,73]. Research into these imbalances 
suggests a complex relation between estradiol (E2) 
and insulin insensitivity. Several studies have reported 
that postmenopausal women with T2D have increased 
levels of circulating E2[27,74,75]. Elevated E2 has been 
correlated with the development of insulin resistance 
and T2D in these women[76,77]. Nevertheless, there are 
at least two studies that have shown inconsistencies 
between E2 levels and the development of diabetes in 
postmenopausal women[78,79].

There is also a link between high levels of E2 and 
diabetes in men. Diabetic men have shown relative-
ly high basal levels of E2[27,78], while men with higher 
levels of circulating E2 have an increased risk of develop-
ing T2D[80]. Although this may simply be a product 
of higher body fat content as adrenal androgens are 
readily converted to E2 in adipose tissue[81-83], two stu-
dies reported E2 results in men were independent of 
obesity[78,80].

Findings with animal models suggest an opposite 
conclusion for E2 and diabetes, at least during reproduc-
tive ages. Male mice with streptozotocin-induced insulin 
insensitivity are more likely to develop diabetes than 
their female cohorts. This increased risk of diabetes in 
the males can be attenuated with E2 supplements[84]. 
Also, mice lacking the alpha subtype of estrogen rece-
ptor (ERα) have been reported to develop insulin insensi-
tivity[85]. In contrast, these data in animals mirror those 
from postmenopausal women in which glucose homeo-
stasis was positively impacted with estrogen therapy in 

the short term[86].
Sex differences in androgen-diabetes relations 

have also been reported. Postmenopausal women with 
diabetes displayed elevated circulating testosterone 
(TS) levels[27,75]. Reports suggest that premenopausal 
women with higher levels of TS[76,79], as well as female 
mice administered the androgen[84], had a greater risk 
of developing diabetes. Another example is the link 
between T2D development and hyperandrogenism 
experienced by patients with polycystic ovarian synd-
rome[87]. Still, much like E2, there are also studies that 
dispute these reports, particularly in postmenopausal 
women[77,78].

A clear sex difference is also indicated in that 
diabetic men tend to have either lower total, free, or 
bioavailable TS than healthy men[27,88,89]. Indeed, men 
with the highest levels of TS were at the lowest risk 
and men with lowest levels of TS were at highest risk 
for developing T2D[78,79,90]. Moreover, men undergoing 
androgen deprivation treatments for prostatic cancer 
had a greatly increased risk of developing T2D[91]. Yet 
again, these reports are not without contradiction[92] and 
some studies found this relationship to be dependent on 
obesity[80,93].

Taken together, there are clear inconsistencies in 
the findings on sex hormones and diabetes. There 
is also an apparent lack of research focusing on sex 
hormones in premenopausal diabetic women that 
should be addressed[26]. It is again important to note 
that many studies fail to acknowledge the possible 
relation of sex hormones to the IGF1 system. Findings 
with serum E2 data are consistent with findings from 
metaanalyses examining IGF1[24,25]. Their proposed 
Ushaped association of IGF1 and T2D fits into the well
defined mechanistic relationship between E2 and IGF1, 
described in more detail below. The relation between sex 
hormones and IGF1 suggests that a delicate hormonal 
balance is likely an important facet of diabetes-induced 
brain and cognitive impairment. 

NEUROPROTECTION: SEX HORMONES 
AND IGF1
Estrogen and IGF1
An intriguing feature of neuroactive hormones is their 
ability to protect the CNS from damage, especially in 
regards to estrogen. ER activation is implicated in the 
maintenance of various metabolic processes that are also 
associated with diabetes, including glucose homeostasis 
and obesity[94,95]. Only recently has research with animal 
models focused on neuroprotection from IGF1E2 
interactions. Evidence suggests that neuroprotective 
properties of E2 are directly related to receptor activities 
of insulinlike peptide receptors, mainly IGF1R. E2 and 
IGF1 work in tandem to reciprocally modulate and 
facilitate ER and IGFIR activation of the PI3KAkt and 
MAPKERK signaling cascades[96-100].

IGF1 shows differential sensitivities to the two 
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estrogen receptor subtypes with ERα being more 
sensitive than ERβ[97,101]. Selective inhibition of IGF1R, 
for instance, downregulates ERα expression in the 
hypothalamus, hippocampus, and cerebral cortex, with 
the only significant changes of ERβ occurring in the 
cerebellum[38]. Many glial and neuronal cells in the brain 
express IGF1R and both ER subtypes[102]. In particular, 
ERα is uniquely capable of increasing IGF1R activity of 
downstream PI3KAkt signaling in rodent models[103,104]. 
ERα activation also increases the binding of p85 and 
IRS1 regulatory subunits of PI3K and, thus, may be 
one mechanism assisting in Akt pro-survival signaling 
through the IGF1R[39,97] (Figure 1).

Administration of E2 to mice increased IGF1R and 
ERα activity in the brain, enabling activation of IGF1R 
and downstream PI3KAkt pathway signaling[97]. 
Similarly, IGF1 and insulin modulated ER effects on 
gene transcription and the PI3KAktGSK3β signaling 
cascade[38,98,103,105,106]. GSK3β is a protein kinase known 
particularly well for its role in glycogen synthesis. How-
ever, as reviewed by Jacobs et al[60], recent attention has 
turned to the dual pro- and anti-apoptosis capabilities of 
GSK3β regulated through multiple different pathways. 
Indeed, the neuroprotective effects of IGF1 may be 
consequent to Aktderived inhibition of GSK3β in a 
hypoxic state[107] (Figure 1).

Activation of the MAPK pathway is another impor
tant signal transduction pathway involved with regula-
ting gene transcription and cellular proliferation and 
differentiation, particularly in cancer[108]. However, 
multiple studies have demonstrated that the neuro-
protective properties of estrogen are also derived from 
its ability to regulate MAPK signaling in the brain[38]. Both 
estrogen and IGF1 can facilitate MAPK signaling through 
the IGF1R, with IGF1 increasing ERα activities in the 
presence of E2[104]. Akt inhibitors are capable of nullifying 
the neuroprotective effects of IGF1 and E2 regardless of 
MAPK signaling[99,104], while ERK suppression increases 
PI3KAkt activity via ER and IGF1R heterodimers[39]. 
Thus, it appears the PI3KAkt prosurvival signaling 
cascade is the most involved with the neuroprotective 
coupling of E2 and IGF1[39].

It is important to note that IGF1 and E2 have a 
remarkable reciprocity. Inhibition of ER activity can 
downregulate IGF1R expression in the hippocampus[109], 
a brain region known to atrophy in patients with dia-
betes and glucose intolerance[110-112]. Similarly, IGF1 
has the capacity to upregulate ERα in the hippocam-
pus and is impaired following administration of IGF1R 
antagonists[109]. Agonists or antagonists of either 
hormone can respectively facilitate or inhibit the neuro-
protective and memory enhancing properties of the 
other[96,109,113-116]. This has led some to suggest that 
cooperation between IGF1R and ER is required for many 
E2-induced neuroprotective processes. The present 
section does not, however, do justice to the complexity 
of the relation between estrogen and IGF1 receptors. 
A fuller explanation can be found in one of several re-
views[37-39,101,109,117].

Androgens and IGF1
Far less research has examined a functional link between 
IGF1 and androgens in the brain. This is an unfortunate 
but common trend in neuroendocrinology. Estrogens are 
the most intensely studied gonadal hormone, despite 
estrogens and androgens sharing metabolic pathways 
and functional properties. Much of the current literature 
on IGF1androgen relations are directed at the periphery, 
particularly prostate cancer and motor systems, for 
which there are a number of recent reviews[118,119]. Few 
studies have examined IGF1androgen interactions in 
neuroprotection[120,121] and none, to our knowledge, 
have empirically examined this interaction in diabetes. 
Therefore, we have relied on peripheral data, often 
from in vitro experiments, to extrapolate the androgen 
receptor (AR) brain discussion. 

There is evidence that the two main androgens, 
TS and dihydrotestosterone (DHT), are capable of 
neuroprotection through binding the AR[122-126]. Similar 
to ERα, androgen activation of the AR in mouse 
vas deferens epithelial cells can modulate the p85 
regulatory subunits of PI3K and subsequently trigger 
Akt expression (Figure 1). Inhibiting the AR prevents 
these signaling effects[127]. Phosphorylation of MAPK 
and Akt can also increase AR activation in low androgen 
and estrogen concentrations, as well as increase the 
neuroprotective activities of ERα and AR[128]. Recent 
findings showed that DHT, which has a higher affinity 
than TS for the AR, prevents apoptosis in a C6 glial cell 
line through the PI3KAkt signaling cascade[129]. These 
effects were also impaired by inhibition of PI3K and 
suggest a functional relationship between apoptosis and 
AR activities. 

Interestingly, studies have demonstrated that 
binding of DHT to the transmembrane AR impairs MAPK 
and PI3K signaling and subsequent neuroprotection 
from DHT or E2[130-132]. This suggests that nuclear 
activation of the AR by DHT is likely one mechanism 
behind DHT’s neuroprotective properties[130]. DHT may 
also interact with effectors downstream of ER and 
IGF1R signaling. Both TS and DHT can activate the 
MAPKERK signaling cascade[132] which has been shown 
to induce ribosomal S6 kinase (Rsk) expression. Rsk 
signaling can lead to the inhibition of the pro-apoptosis 
Bad protein and the activation of downstream effectors 
including the ER, GSK3β and ELK1[133] (Figure 1).

One possible explanation for the neuroprotective role 
of androgens is the conversion in the steroid metabolic 
cascade of TS into E2 by the enzyme aromatase. That 
is, TS may be involved in neuroprotection only to the 
extent that TS is a precursor for E2, which is capable of 
activating MAPK or PI3K signaling through the ER and 
IGF1R. The aromatization of TS into E2, as well as the 
aromatase enzyme, have been suggested to play an 
important role in neuroprotection[134-139]. 

The ratio of endogenous TS to E2, and subsequent 
influences of aromatized TS, is indeed a topic of 
recent interest[26]. Increased local synthesis of E2 from 
elevated aromatase expression is seen in models 
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of neuroprotection from other brain disorders, e.g., 
stroke[140]. More pertinent to this review, streptozotocin-
induced diabetes causes a considerable reduction in 
aromatase synthesis in female and male reproductive 
systems[141]. Notably, inhibition of aromatase decreases 
E2 and impairs insulin sensitivity and peripheral glucose 
disposal in healthy males[142], although the influence 
this may have on brain integrity and cognitive outcomes 
remains debated[143].

Another explanation places greater emphasis on the 
other pathway in the steroid metabolic cascade leading 
to DHT. Metabolites of DHT, 3α-Diol and 3β-Diol, are also 
bioactive and may bind the ER or insulinlike peptide 
receptors to initiate MAPK or PI3K signaling cascades. 
Indeed, research shows that 3αDiol stimulated PI3K
Akt signaling enhances cell survival in the prostate[144]. 
Similarly, DHT metabolites may influence transcriptional 
activities of nuclear ER by modulating ERinduced MAPK 
or PI3K signaling cascades. 

Few in vivo studies examining these sex steroid 
metabolites have focused on MAPK or PI3K signal 
cascades in the brain. There is, however, evidence 
that 3α-Diol inhibits protein kinase A expression in the 
rat hippocampus[145]. Others have reported that strep-

tozotocin-induced diabetic mice had lower levels of TS 
and 3α-Diol in the cerebral cortex, and lower levels of 
DHT and 3α-Diol in the spinal cord[146]. It is still unclear, 
though, whether 3α-Diol and 3β-Diol interact with or 
initiate the MAPK or PI3K signaling cascades following 
activation of the ER, AR, or, possibly, IGF1R.

None of these explanations clarify fully the ability of 
the AR to directly trigger these signaling cascades. We 
do not aim to discount the neuroprotective mechanisms 
of ER and AR, or the clear link between E2 and IGF1 
processes in neuroprotection. Rather, we simply sug
gest that androgen-derived neuroprotection may be 
intertwined with IGF1, the activation of insulinlike 
peptide receptors, and/or the IGF1R and ER coupling. 
Given the common signaling pathways between these 
hormones, we suggest future research should aim to 
include androgens and AR activities into the ERIGF1R 
neuroprotective coupling, as well as serum comparisons 
in brain-health outcomes of diabetic patients.

CONCLUSION
The reciprocity of IGF1 and estrogen in neuroprotective 
processes is well-established in cell cultures and 

Figure 1  Similar signaling cascades involved with neuroprotection for insulin-like peptides and sex hormones. The insulin receptor (IR), insulin-like growth 
factor 1 receptor (IGF1R), and insulin-IGF1 hybrid receptor enact their neuroprotection through the mitogen-activated protein kinases-extracellular signal-related 
kinase (MAPK-ERK) or phosphoinositide 3-kinase (PI3K)-Akt pathways signaling cascades. Although IGF1R can directly activate the RAS-ERK pathway, both 
the insulin-like peptide receptors and the estrogen receptor alpha (ERα) firstly interact with insulin receptor substrate 1 (IRS-1) scaffolding proteins. ERα and the 
androgen receptor (AR) can also directly modulate PI3K-Akt and MAPK-ERK signaling. Both IRS-1 and p85 binding of PI3K are increased with ERα activation, 
leading to downstream Akt-derived inhibition of glycogen synthase kinase 3 (GSK3) and mammalian target of rapamycin (mTOR). GSK3, specifically, is involved with 
glycogen synthesis, while both effectors are involved in apoptosis. A similar effect may occur with AR’s ability to modulate p85 binding to PI3K. AR-induced MAPK-
ERK signaling also results in ribosomal S6 kinase (Rsk) expression that can inhibit the pro-apoptosis bcl-2-associated death promoter protein, as well as effects 
on the ER, GSK3, and the ETS-like transcription factor, ELK1. Solid black arrows indicate downstream interaction. Dashed black arrows represent the influence of 
kinases or proteins on the cellular environment. Dashed blue arrows represent the binding capabilities of IGF1 and insulin across all three receptor types.
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animal models[38]. Interactions between androgens 
and IGF1 may also play an important role in the E2
IGF1 neuroprotective coupling. Both estrogens and 
androgens enact their neuroprotection through similar, 
but not identical, signal transduction pathways. Recog
nition of this has led us to consider the possibility that 
these sex hormones may work together with IGF1 and 
insulinlike peptide receptors to modulate MAPK and 
PI3K signaling and their neuroprotective properties. 

Regulation of MAPK and PI3K activity may also be a 
driving force behind the structural changes, atrophy of 
brain regions, or functional changes, often observed in 
diabetic patients. Drawing conclusions from imaging data 
in humans to those found in animal models is indeed 
difficult. Nevertheless, there is a need for a clearer 
mechanistic explanation grounding the cognitive decline 
and brain abnormalities observed in diabetic patients. 

Future studies in human research on diabetic brain 
integrity should integrate hormone titer measures to help 
substantiate sex differences in brain-health outcomes 
of diabetic patients. This approach may also assist in 
identifying region-specific brain abnormalities resulting 
from fluctuations in IGF1 and sex hormones between 
men and women. Moreover, animal models examining 
the E2IGF1 coupling in neuroprotection should employ 
streptozotocin-induced diabetes, as well as the possible 
role of androgens and AR activities. These conclusions 
warrant further examination of the variability present in 
cognitive and brain-health outcomes for patients with 
diabetes as a result of sex hormone relations to IGF1, 
insulin, and the insulin-like peptide receptors.
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Abstract
AIM
To elucidate how high diet-induced endoplasmic reti-
culum-stress upregulates thioredoxin interacting protein 
expression in Müller cells leading to retinal inflammation. 

METHODS
Male C57Bl/J mice were fed either normal diet or 
60% high fat diet for 4-8 wk. During the 4 wk study, 
mice received phenyl-butyric acid (PBA); endoplasmic 
reticulum-stress inhibitor; for 2 wk. Insulin resistance 
was assessed by oral glucose tolerance. Effects of pal-
mitate-bovine serum albumin (BSA) (400 µmol/L) were 
examined in retinal Müller glial cell line and primary 
Müller cells isolated from wild type and thioredoxin 
interacting protein knock-out mice. Expression of thiore-
doxin interacting protein, endoplasmic reticulum-stress 
markers, miR-17-5p mRNA, as well as nucleotide-binding 
oligomerization domain-like receptor protein (NLRP3) 
and IL1β protein was determined.

RESULTS
High fat diet for 8 wk induced obesity and insulin 
resistance evident by increases in body weight and 
impaired glucose tolerance. By performing quantitative 
real-time polymerase chain reaction, we found that high 
fat diet triggered the expression of retinal endoplasmic 
reticulum-stress markers (P  < 0.05). These effects 
were associated with increased thioredoxin interacting 
protein and decreased miR-17-5p expression, which 
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were restored by inhibiting endoplasmic reticulum-
stress with PBA (P  < 0.05). In vitro , palmitate-BSA 
triggered endoplasmic reticulum-stress markers, which 
was accompanied with reduced miR-17-5p and induced 
thioredoxin interacting protein mRNA in retinal Müller 
glial cell line (P  < 0.05). Palmitate upregulated NLRP3 
and IL1β expression in primary Müller cells isolated from 
wild type. However, using primary Müller cells isolated 
from thioredoxin interacting protein knock-out mice 
abolished palmitate-mediated increase in NLRP3 and 
IL1β.

CONCLUSION
Our work suggests that targeting endoplasmic reticulum-
stress or thioredoxin interacting protein are potential 
therapeutic strategies for early intervention of obesity-
induced retinal inflammation. 

Key words: High fat diet; Palmitate; Endoplasmic-
reticulum-stress; Inflammation; Thioredoxin-interacting 
protein; Micro-RNA 17-5p

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: We previously showed that high fat diets (HFD) 
induced retinal inflammation and vascular dysfunction. 
These results were associated with an increase in 
thioredoxin interacting protein (TXNIP) at the mRNA 
and protein level. Here, we examined the mechanisms 
by which HFD triggers retinal TXNIP. Interestingly, we 
found that HFD/palmitate triggers ER-stress mediators 
including the inositol requiring enzyme 1, an RNAse that 
can degrade number of mRNAs including the microRNA; 
miR-17-5p and sustains TXNIP expression. Inhibiting 
ER-stress prevented the increase in TXNIP in vivo  and 
in Müller cells, the main glia in the retina. Deletion of 
TXNIP blunted NLRP-3 inflammasome and IL-1β release 
in Müller cells. 

Coucha M, Mohamed IN, Elshaer SL, Mbata O, Bartasis ML, El
Remessy AB. High fat diet dysregulates microRNA175p and 
triggers retinal inflammation: Role of endoplasmic-reticulum-stress. 
World J Diabetes 2017; 8(2): 5665  Available from: URL: http://
www.wjgnet.com/19489358/full/v8/i2/56.htm  DOI: http://dx.doi.
org/10.4239/wjd.v8.i2.56

INTRODUCTION
Obesity, recently upgraded from a mere risk factor to 
a disease state, is affecting one third of United States 
population[1]. Clinical evidence showed that obesity not 
only can accelerate developing type-2 diabetes and 
cardiovascular complications, but also induce retinal 
microvascular abnormalities, which eventually leads to 
visual impairments[2,3]. High fat diets (HFD) together 
with the improper physical activity are the culprit in 

the obesity-induced pre-diabetes. Therefore, there is 
an urgent need to unravel the mechanisms involved 
in HFD-mediated neurovascular abnormalities. Our lab 
has previously shown that consumption of high caloric 
diet saturated fatty acids induced retinal inflammation 
and microvascular dysfunction via upregulating the 
expression of thioredoxin interacting protein (TXNIP); a 
regulator of the antioxidant thioredoxin; and activating 
NOD (NOD)-like receptor protein (NLRP3)-inflam-
masome[4]. Similar observations showed the contribution 
of TXNIP/NLRP3-inflammasome signaling pathway to 
the development of various disorders in other organs[5-7]. 
However, molecular mechanisms by which HFD triggers 
early TXNIP expression in the retina are still unclear.

MicroRNAs are small non-coding RNAs that control 
the translation and transcription of various genes via 
annealing to the complementary sequences in the 
3′ untranslated region of their target gene[8]. To date, 
several miR classes have been identified to be involved 
in development of obesity, diabetes and diabetic com-
plications[9]. Bioinformatic analysis of the TXNIP 3′ UTR 
identified 11 possible miRNAs that can regulate its expres
sion including miR-130/301, miR-128, miR-148/152, 
miR-135, miR-106/302, miR-17-5p/20/93.mr/106/519.
d, miR-128, miR-15/16/195/424/497, miR-106/302, 
miR-148/152. Nevertheless, levels of miR-17-5p have 
been reported to rapidly decline under stress condition 
resulting in enhancing TXNIP expression[10,11]. 

Unfolded protein response (UPR) is an adaptive 
response, which prevents the accumulation of misfolded 
proteins in the lumen of the endoplasmic reticulum 
(ER). The UPR is transduced by three major ER-resident 
stress sensors, namely Protein Kinase RNA-like ER 
kinase (PERK), activating transcription factor 6 (ATF6), 
and inositol requiring enzyme 1 (IRE1). However, when 
protein misfolding exceeds the capacity of the UPR an 
ER-stress will result that triggers programmed cell death. 
So far, ER-stress has been shown to play a critical role in 
the pathogenic progression of various chronic diseases 
including diabetic retinopathy (reviewed in[12-14]). Among 
UPR pathways, IRE1α, an ER bifunctional kinase/RNase 
has been shown to destabilize number of RNA and 
microRNA including miR-17-5p in pancreatic beta-
cells[10,11]. Several studies reported the impact of HFD 
and its related metabolite such as free fatty acid in 
inducing ER-stress[15-17]. In the current study we were 
trying to decipher the underlying mechanisms that link 
HFDmediated ERstress to retinal inflammation. Here, 
we tested the hypothesis that HFD-mediated ER-stress 
upregulates TXNIP mRNA expression via dysregulating 
miR175p resulting in retinal inflammation. 

MATERIALS AND METHODS
Animals
All animal experiments were conducted in agreement 
with Association for Research in Vision and Ophthalmology 
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statement for use of animals in ophthalmic and vision 
research, and Charlie Norwood VA Medical Center Animal 
Care and Use Committee (ACORP#15-04-080). 6-8 
wk old male C57BL6/J mice (Stock 000664, Jackson 
Laboratory, ME, United States) were used in the in vivo 
studies. For the long term study, mice were fed ad libitum 
with normal rat chow (7% fat) or HFD [36 g %, 251 kJ 
(60 kcal) %fat] (F2685 Bioserv, Frenchtown, NJ, United 
States) for 8 wk. For the short term study, mice were fed 
either normal diet (ND) or 60% HFD for 2 wk. Mice were 
then kept on HFD for additional 2 wk while receiving 
an ER-stress inhibitor [Phenyl-butyric acid (PBA), 100 
mg/kg] or vehicle. PBA was dissolved in DMSO/PBS and 
administered via oral gavage 5 d/wk. Mice were weighed 
weekly to track the increase in the body weight. 

Intra-peritoneal glucose tolerance test
Mice went overnight fasting, and their fasting plasma 
blood glucose was measured as the baseline. Then 
all mice received an intraperitoneal injection of glu-
cose (2 g/kg). Blood glucose levels were measured 
at different time points till 120 min after the glucose 
injection using a glucometer.

In-vitro studies
The rat retinal Müller glial cell line (rMC-1) was obtained 
originally from V. Sarthy (Department of Ophthalmology, 
Northwestern University, Chicago, IL, United States)[18]. 
Primary mouse Müller Cells from WT and TKO mice were 
isolated and cultured as described previously[19]. Cells 
were grown to confluency in complete media (DMEM, 
10% vol/vol. FBS, 1% vol/vol. penicillin/streptomycin). 
Sodium palmitate (Cat.# P9767; Sigma-Aldrich, St. 
Louis,MO, United States) was dissolved in 50% ethyl 
alcohol, then added drop-wise to preheated 10% 
endotoxin- and fatty acid-free BSA (Cat.# 22070017; 
Bioworld, Dublin, OH) in DMEM at 50 ℃ to create an 
intermediate stock solution of palmitate coupled to BSA 
(PalBSA). Confluent cells were switched to serumfree 
medium for overnight then were treated for 6 h with 
Pal-BSA solutions (400 µmol/L final concentration). 
Equal volumes of 50% ethyl alcohol with BSA alone 
served as control. In another set of rMC-1, cells were 
serum starved for 4 h then treated with PBA (1 mmol/L, 
Cat.#P21005, Sigma-Aldrich) or IRE1α inhibitor (STF-
083010, 50 µmol/L) for 2 h then palmitate was added 

and kept overnight.

Quantitative real-time PCR
A one-step quantitative RT-PCR kit (Invitrogen) was used 
to amplify 10 ng retinal mRNA as described previously[4]. 
PCR primers (Table 1) were obtained from Integrated 
DNA Technologies (Coralville, IA, United States). Quantita-
tive PCR was conducted using StepOnePlus qPCR system 
(Applied BioSystems, Life Technologies). The percent 
expression of various genes was normalized to 18S.

Micro-RNA detection
MirVana PARIS kit (Cat.# AM1556, Invitrogen) was used 
for miRNA isolation according to manufacturer’s protocol. 
Reverse transcriptase reactions; including samples and 
no-template controls; were run using TaqMan® Micro-
RNA Reverse Transcription Kit (Cat.# 4366596, Applied 
Biosystems) as described previously[20]. PCR amplification 
was performed using TaqMan® Universal PCR Master 
Mix (Cat.# 4324018, Applied Biosystems) according to 
manufacturer’s protocol. The percent expression of miR-
17-5p was normalized to U6.

Western blot analysis
Retinas were isolated and homogenized in cell disrup-
tion buffer as described previously[21]. Müller cells were 
harvested by scraping thoroughly with cell scraper 
after the addition of cell disruption buffer. Samples (25 
µg protein) were separated by sodium dodecyl sulfate 
polyacrylamide gel electrophoresis and transferred to a 
nitrocellulose membrane. Membranes were probed with 
the primary antibodies; anti-TXNIP (Cat.# K0205-3 MBL 
Abacus ALS Australia and Cat.# 403700, Invitrogen, 
Grand Island, NY), anti-NLRP-3 (Cat.# LS-B4321, 
LifeSpan Biosciences, Inc, Seatle, WA), anti-IL1β (Cat.# 
ab9722, Abcam, Cambridge, MA, United States) then 
reprobed with housekeeping gene; anti-GAPDH (Cat.# 
5174, Cell Signaling, Danvers, MA, United States), 
anti-tubulin (Cat.# ab4074, Abcam, Cambridge, MA, 
United States) or anti-actin (Cat.# a5060, Sigma-
Aldrich) to confirm equal loading. The primary antibody 
was detected using a horseradish peroxidase (HRP) 
and enhanced chemiluminescence. The films were 
scanned and the band intensity was quantified using 
densitometry software version 6.0.0 Software from 
alphaEaseFC (Santa Clara, CA) and expressed as relative 

  Gene Forward Reverse 

  18 S CGCGGTTCTATTTTGTTGGT AGTCGGCATCGTTTATGGTC 
  XBP1 ACACGCTTGGGAATGGACAC CCATGGGAAGATGTTCTGGG
  XBP1-SPLICED GAGTCCGCAGCAGGTG GTGTCAGAGTCCATGGGA
  PERK AGTCCCTGCTCGAATCTTCCT TCCCAAGGCAGAACAGATATACC
  IRE1α GGGTTGCTGTCGTGCCTCGAG TGGGGGCCTTCCAGCAAAGGA
  ATF6 TGCCTTGGGAGTCAGACCTAT GCTGAGTTGAAGAACACGAGTC
  CHOP CTGGAAGCCTGGTATGAGGAT CAGGGTCAAGAGTAGTGAAGGT
  TXNIP AAGCTGTCCTCAGTCAGAGGCAAT ATGACTTTCTTGGAGCCAGGGACA

Table 1  The sequence of the polymerase chain reaction primers used in the experiments
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optical density (OD).

Statistical analysis
All the data are expressed as mean ± SD or SEM. 
Differences between ND vs HFD and control vs palmi-
tate were tested using two-sample t tests. One-
way ANOVA followed by Bonferroni post-hoc multiple 
comparisons to assess significant differences between 
3 or more groups (Graphpad-Ver.6). For body weight 
and blood glucose measurements, area under the 
curve (AUC) across all the time points was calculated. 
A series of 2 gene (WT vs KO) × 2 treatment (TRT) 
(no vs yes) ANOVAs with interaction were used to 
determine the effect of palmitate on NLRP3 and IL1β. A 
Bonferroni post-hoc multiple comparison test was used 
for significant interactions. Significance for all tests was 
determined at alpha = 0.05.

RESULTS
HFD/palmitate triggered ER-stress markers in retina and 
Müller cells
Several studies showed that HFD or palmitate triggers 
ER-stress in different organs and cell types[17,22-24]. 
Therefore, we checked the levels of various ER-stress 
markers in the retina isolated from mice fed with HFD, 
and rMC1 treated with palmitate. HFD for 8 wk induced 
obesity and impaired glucose tolerance indicated by an 
increase in body weights (Figure 1A) and glucose levels 
(Figure 1B) across the different time points compared 
to ND. We also found that HFD induced an increase in 

XBPS1 and ATF6 mRNA levels only, while, there was 
no change in XBP1, PERK, CHOP and IRE1α (Figure 
1C). In order to study the role of Müller cells in HFD-
induced inflammation, rMC-1 were treated with 400 
µmol/L palmitate coupled to bovine serum albumin (Pal-
BSA) for 6hr. Palmitate; a saturated fatty acid that is 
increased in plasma following a HFD[25]; significantly 
upregulated IRE1α, PERK, ATF6 and CHOP (Figure 1D). 

HFD/palmitate induced TXNIP upregulation and miR-17-
5p dysregulation in retina and Müller cells
Our lab has previously reported that HFD and palmitate 
can induce TXNIP mRNA expression in whole retina 
and retina endothelial cells respectively[4]. However, 
the upstream events by which HFD/palmitate trigger 
TXNIP expression are still unclear. In agreement with 
the previous study, we found that 8 wk of HFD and 
palmitate led to an upregulation of TXNIP mRNA levels 
in whole retina and Müller cells (Figure 2). These results 
were associated with miR-17-5p dysregulation in both 
whole retina and Müller cells (Figure 2).

PBA mitigated HFD-mediated ER-stress
To verify the role of ER-stress in HFD-induced TXNIP 
upregulation, mice were fed either ND or HFD for 2 wk. 
Then mice were kept on HFD for additional 2 wk while 
receiving PBA; an ER-stress inhibitor. Body weights were 
not changed by the HFD or PBA treatment (Figure 3A). 
However, blood glucose tolerance was significantly less in 
mice fed with HFD compared to ND after intra-peritoneal 
glucose tolerance test (Figure 3B). HFD-induced insulin 
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resistance suggested by marked increase in the area 
under the curve remained unaffected by inhibiting ER-
stress with PBA (Figure 3C). HFD for 4 wk induced 
expression of retinal ER-stress markers mRNA including 
the RNAse IRE1α, ATF6 and PERK which were restored 
by PBA treatment to control level (Figure 3D).

ER-stress inhibition prevented HFD-induced TXNIP 
upregulation and miR-17-5p dysregulation
To establish a causal relationship of the role of ER-stress 
miR-17-5p and TXNIP expression, we assessed their 
expression in animals that were treated with ER-stress 
inhibitor PBA. As shown in Figure 4A, intervention with 
PBA treatment in HFD partially but significantly increased 

retinal miR-17-5p compared to untreated HFD. HFD 
triggered TXNIP mRNA and protein expression compared 
to ND, which were significantly inhibited in HFDanimals 
treated with PBA (Figure 4B-D). To establish a causal 
relationship of the role of ER-stress and activation of 
IRE1α in palmitate-induced TXNIP expression, rMC1 
were treated for 2 h with PBA or IRE1α inhibitor prior to 
the addition of palmitate. As shown in Figure 4, inhibiting 
ER-stress or IRE1α markedly reduced the increase in 
TXNIP protein expression in palmitate-treated cells. 

Knocking out TXNIP abolished palmitate induced 
inflammation in Müller cells
We recently showed that HFD induced expression 
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of TXNIP in Müller cells, which was associated with 
increased TXNIP-NLRP3 inflammasome interaction as 
well as the expression of cleaved caspase-1 and IL-1β[4]. 
Therefore, to dissect the role of TXNIP in palmitate-
mediated inflammation in Müller cells, primary Müller 
cells from both WT and TKO mice were used. Primary 
Müller cells were serum starved overnight then treated 
with 400 µmol/L palmitate coupled to bovine serum 

albumin (Pal-BSA) for 6 h. We found that palmitate led to 
an increase in NLRP3 and IL1β protein expression in cells 
isolated from WT but has no effect on cells isolated from 
TKO mice (Figure 5).

DISCUSSION
Central obesity and insulin resistance are hallmarks 
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of metabolic syndrome that comprises dyslipidemia, 
hypertriglyceridemia, hyperinsulinemia, hypertension, 
and reduced HDL cholesterol. Changes in lipid profile 
and accumulation of free fatty acids are highly significant 
in all forms of diabetes pointing to its possible link with 
inflammation and vascular complications (reviewed 
in[26]). Several studies showed the role of free fatty 
acids mainly palmitate in inducing pro-inflammatory 
response[27,28]. It should be noted that thorough under-
standing of the interaction between vascular and non-
vascular cells is crucial for the management of retinal 
dysfunction. Müller cells are the principal glial cell found 
in the retina, which span the entire retinal layers and 
considered as resident innate immune cells (reviewed 
in[29]). Because of their unique morphology, Müller cells 
are considered a signaling hub that senses minute 
changes in retinal milieu, connecting retinal neuronal 
with retinal endothelial cells. In the current study we 
were interested in unraveling the mechanisms through 
which HFD leads to retinal inflammation. We also 
highlighted the critical role of Müller cells after the insult 
with the free fatty acid palmitate, which hasn’t been 
reported so far. The main findings of this study are that 
(1) HFD or palmitate induced ER-stress dysregulates 
miR-17-5p in retina and Müller cells; (2) ER-stress 
triggers TXNIP expression in retina and Müller cells 
and (3) amplified TXNIP levels activate NLRP3, which 
contributes to inflammation.

Müller cells are considered major sources of inflam
matory mediators, which become activated in response 
to various insults[19,30-32]. We and others have shown 
the increase of TXNIP expression in glial Müller cells 
due to chronic hyperglycemia[33-35] or HFD[4]. TXNIP is a 
physiological inhibitor of the thioredoxin system, which 
is one of the main antioxidant defense mechanisms in 
our body. TXNIP acts via binding to thioredoxin, making 
it unable to bind with other proteins (reviewed in[36]). In 
addition to the ability of TXNIP in inducing inflammatory 
cytokines via activating nuclear factor kB, it can act as a 
direct activator of NOD-like receptor protein (NLRP3)[34,37]. 
NLRP3-inflammasome is a component of the innate 
immune system responsible for initiating obesity-induc-
ed inflammation[38]. TXNIP-NLRP3 interaction results 
in NLRP3 complex assembly and auto-activation of ca-
spase-1, which eventually processes pro-IL1β into its 
mature form leading to inflammation[38,39]. Recent stu-
dies showed that HFD and palmitate trigger ER-stress in 
various organs and cell types[17,22-24]. However, the link 
between HFD/palmitate-induced ER-stress and TXNIP 
expression in Müller cells is yet to be determined. Here, 
we observed significant activation of the unfolded protein 
response ER-stress chaperons in retinas from 8-wk 
HFD mice (Figure 1). We also observed no difference 
in mRNA level of IRE1α an ER-stress marker and a 
bifunctional kinase/Rnase in HFD. However, there was 
an increase in the splicing of XBP1; IRE1α downstream 
target; evident by 3.5-fold increase in spliced XBP-1 in 
HFD compared to ND, which suggests IRE1α activation. 
Interestingly, treatment of Müller cells with palmitate; 

one of the most abundant saturated fatty acids in 
plasma that is significantly increased following HFD[25]; 
led to an increase in all ER-stress markers at the mRNA 
level including IRE1α (Figure 1). Among UPR pathways, 
IRE1α has been shown to degrade key cell regulators 
such as the neuronal cue, netrin in the retina[39,40] and 
miR-17-5p in pancreatic beta-cells[10,11]. MiR-17-5p is 
a small noncoding RNAs that binds predominantly to 
the 3′UTR of TXNIP leading to downregulation of its 
expression[10]. Indeed, HFD and palmitate resulted in a 
significant decrease in miR175p in the total retina and 
Müller cells, respectively, an effect that coincided with 
TXNIP upregulation (Figure 2). These findings support 
the link between HFD, ER-stress and TXNIP upregulation 
in Müller cells. 

Epidemiological studies showed a significant reduc
tion in miR-17-5p in omental fat and blood from obese 
non-diabetic subjects compared to lean subjects[41,42]. 
In the current study, we showed that HFD or palmitate 
dysregulated miR-17-5p in retina and Müller cells (Figure 
2). Interestingly, retinal miR-17-5p expression is not 
affected by hyperglycemia or diabetes compared to 
normal glycemic controls (data not shown). In agree-
ment, Lerner et al[10] reported similar insensitivity of miR-
17-5p to high glucose treatment in pancreatic beta cells. 
These findings shed light on the selective sensitivity of 
miR-17-5p to degrade in response to HFD and palmitate. 
Taken together, our findings suggest that HFDinduced 
ER-stress uniquely triggers TXNIP expression via dys-
regulating miR-17-5p. 

To dissect the role of ER-stress in regulating TXNIP 
expression, PBA was added to cultured rMC1 prior to 
palmitate treatment. PBA is an FDA approved drug for 
the clinical management of urea cycle disorder. PBA is a 
chemical chaperone that stabilizes protein conformation 
and in turns ER-folding (reviewed in[43,44]). Indeed, 
treating the cells with PBA a general ER-stress inhibitor 
showed a trend decrease in TXNIP expression. Similar 
findings were obtained by the use of a selective IRE1α 
inhibitor (Figure 4). However, the observed reduction 
didn’t reach significance, which could be due to the small 
sample size. We overcame this limitation, by treating 
mice kept on HFD with PBA for 2 wk. We showed that 
inhibiting ER-stress significantly blunted the increase 
in TXNIP observed in HFD group (Figure 4), without 
altering insulin resistance (Figure 3). Next step we tried 
to verify the role of TXNIP in inflammatory response 
in Müller cells. Building on our previous findings that 
silencing TXNIP reversed palmitate-induced IL1β release 
and eventually cell death in endothelial cells[4], we 
isolated primary Müller cells from WT and TKO mice 
then exposed them to palmitate. We demonstrated 
that palmitate led to an increase in NLRP3 and IL1β 
expression in WT and has no effect on TKO (Figure 5), 
which indicates that TXNIP is responsible for inflam-
mation in Müller cells. These results lend further support 
to prior findings that manifest the critical role of IL1β in 
mediating vascular injury in the pathogenesis of diabetic 
retinopathy. Kowluru et al[45] showed that injecting IL-1β 
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into the vitreous of normal rats increased cell apoptosis 
similar to what is observed in diabetes. Deletion of IL1β 
receptor prevented autocrine loop of inflammation[46] and 
protected retinas from diabetes-induced development of 
acellular capillaries[47]. 

In summary, clinical and experimental studies have 
repeatedly reported the contribution of inflammation 
to the pathogenesis of diabetic retinopathy (reviewed 
in[48,49]). Similarly, suppression of inflammation has 
shown protective effects via decreasing leukostasis, 
blood-retinal barrier breakdown and the acellular 
capillaries formation[50]. Here, we provide preliminary 
evidence that exposure to high fat diet and palmitate 
trigger retinal ER-stress and glial TXNIP expression and 
render the retina vulnerable to inflammation. Early 
intervention of ER-stress or TXNIP presents potential 
therapeutic strategy in obesity-induced inflammation in 
diabetic retinopathy.

COMMENTS
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diabetic retinopathy. 

Applications
Their results suggest that inhibitors of ER-stress reversed the increase in TXNIP 
in vivo and in Müller cells, the main glia in the retina. The findings of their short-
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Abstract
AIM
To investigate the association of NFKB1 gene -94 ATTG 
insertion/deletion (rs28362491) polymorphism with 
inflammatory markers and risk of diabetic nephropathy 
in Asian Indians.

METHODS
A total of 300 subjects were recruited (100 each), nor-
moglycemic, (NG); type 2 diabetes mellitus (T2DM) 
without any complications (DM) and T2DM with diabetic 
nephropathy [DM-chronic renal disease (CRD)]. Analysis 
was carried out by polymerase chain reaction-restriction 
fragment length polymorphism and ELISA. Pearson’s corre-
lation, analysis of variance and logistic regression were 
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used for statistical analysis.

RESULTS
The allelic frequencies of -94 ATTG insertion/deletion 
were 0.655/0.345 (NG), 0.62/0.38 (DM) and 0.775/0.225 
(DM-CRD). The -94 ATTG ins allele was associated 
with significantly increased levels of urinary monocyte 
chemoattractant protein-1 (uMCP-1); uMCP-1 (P  = 
0.026) and plasma tumor necrosis factor-alpha (TNF-α); 
TNF-α (P  = 0.030) and almost doubled the risk of 
diabetic nephropathy (OR = 1.91, 95%CI: 1.080-3.386, 
P  = 0.025).

CONCLUSION
-94 ATTG ins/ins polymorphism might be associated 
with increased risk of developing nephropathy in Asian 
Indian subjects with diabetes mellitus.

Key words: Diabetic nephropathy; Inflammation; NFKB1 
-94 ATTG ins/del polymorphism; Urinary monocyte 
chemoattractant protein-1; Tumor necrosis factor-alpha 

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Type 2 diabetes mellitus (T2DM) is considered 
as long standing inflammatory disease. Diabetic 
nephropathy (DN) is the most common micro-vascular 
complication of T2DM. Pro-inflammatory cytokines 
like Monocyte chemoattractant protein-1 (MCP-1) and 
tumor necrosis factor-alpha (TNF-α) plays a crucial role 
in the pathogenesis of DN. Therefore we investigated 
-94 ins/del ATTG polymorphism in NFKB1 gene and its 
association with the risk of DN in Asian Indians. -94 
ins/del ATTG single nucleotide polymorphism was found 
to increase the urinary MCP-1 and plasma TNF-α levels. 
Our findings open a new area of research to explore 
that -94 ins/del ATTG may be considered as genetic 
markers for early detection of diabetic patients who are 
at greater risk of development of nephropathy.

Gautam A, Gupta S, Mehndiratta M, Sharma M, Singh K, 
Kalra OP, Agarwal S, Gambhir JK. Association of NFKB1 
gene polymorphism (rs28362491) with levels of inflammatory 
biomarkers and susceptibility to diabetic nephropathy in Asian 
Indians. World J Diabetes 2017; 8(2): 66-73  Available from: 
URL: http://www.wjgnet.com/1948-9358/full/v8/i2/66.htm  DOI: 
http://dx.doi.org/10.4239/wjd.v8.i2.66

INTRODUCTION
Chronic renal disease (CRD) is an intricate pathological 
process, often leading to end stage renal disease. The 
causes of CRD are quite multi-factorial ranging from 
infections to heredity, but type 2 diabetes mellitus 
(T2DM) is the major culprit amongst them[1]. In spite 
of the improvement in our knowledge about the eti-
opathogenesis of diabetic nephropathy (DN), the 

intricate mechanisms leading to the development of 
renal injury from chronic hyperglycemia are not yet fully 
understood. DN has been considered a micro-vascular 
complication of hyperglycemia, but various clinical and 
experimental studies have observed that there is a close 
link between hyperglycemia, inflammation and oxidative 
stress (OS)[2]. OS may also be involved in promoting 
a low grade systemic inflammation in patients with 
T2DM and vice versa[3]. Nuclear factor-kappa B (NF-κB) 
activation through hyperglycemia induced OS may lead 
to increased concentration of inflammatory cytokines[4].

NF-κB was identified as a transcription factor which 
controls the expression of numerous genes affecting 
immune response, inflammation, cell-growth control, 
apoptosis and therefore, is an emerging candidate for 
studies on the pathogenesis of inflammatory diseases 
including DN. There are five members of the NF-κB 
family in mammals: NF-κB1: p105/p50, NF-κB2: p52/
p100, RelA: p65, RelB, and c-Rel. The chief form of NF-
κB is a hetero-dimer of the p50 and p65/RelA subunits, 
encoded by the NFKB1 and RelA gene. Normally, 
inactive NF-κB is found in the cytoplasm bound to 
IkBs, which are specific inhibitor proteins in cytoplasm. 
Cell when exposed to a variety of proinflammatory 
stimuli leads to the quick phosphorylation followed 
by ubiquitinylation, and finally proteolytic breakdown 
of I-κB. This causes transfer of NF-κB in nucleus and 
thus leading to increased transcription of gene[5]. NF-
κB transcriptionally regulates many downstream 
proinflammatory genes, mainly including monocyte 
chemoattractant protein-1 (MCP-1), tumor necrosis 
factor-alpha (TNF-α)[6].

MCP-1 is an important proinflammatory chemokine 
which affects the recruitment and function of mono-
cyte[7]. MCP-1 is synthesized in response to a various 
proinflammatory stimuli by kidney cell[8]. A study done 
by Wada et al[9] in 2000 has shown that expression 
of MCP-1 increases in inflammation induced kidney 
diseases including DN. Urinary MCP-1 (uMCP-1) is a 
potential biomarker for renal damage[10]. Hyperglycemia 
induced secretion of abundant MCP-1 from renal 
parenchymal cells, attract monocytes into the kidney 
stimulating myofibroblast-like properties in mesangial 
cells. Kidney macrophages when exposed to MCP-1 
in diabetic milieu promotes activation of macrophage. 
Thus, leading to release of reactive oxygen species (ROS), 
various pro-inflammatory cytokines and profibrotic 
growth factors[11,12]. Thus, resulting in exaggerated inflam-
mation that leads to renal injury through proliferation 
of myofibroblast, augmented production of extracellular 
matrix by mesangial cells and fibroblasts.

TNF-α is a well known proinflammatory cytokine asso-
ciated with systemic inflammation[13,14]. It is produced 
predominantly by macrophages and monocytes[13,14]. 
TNF-α acts via NF-κB signaling and mediates the 
transcription of various cytokines performing roles in 
cell survival, proliferation, inflammatory responses, cell 
adhesion and inflammation[15]. A study has shown that 
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there is upregulation of TNF-α expression in glomeruli 
of diabetic rats[16]. TNF-α is well acknowledged to cause 
damage to renal cells by enhancing renal hypertrophy, 
hemodynamic imbalance, albumin permeability[17]. 
The harmful effects of these responses lead to the 
development of renal disease in patients with T2DM, 
hence resulting in the progression of renal failure. 

In addition to poor glycemic control, OS and inflam-
mation; genetic factors seem to be main determinants of 
DN in terms of both occurrence and severity[18]; however 
the genetic mechanism causing DN is still unexplored. 
In our knowledge, there is no study available regarding 
the polymorphisms of NFKB1 and their correlation 
with levels of uMCP-1 and plasma TNF-α. We have 
reported[19] increased uMCP-1, plasma TNF-α levels in 
subjects with DN when compared to subjects with T2DM 
without nephropathy and observed a positive correlation 
between uMCP-1 and plasma TNF-α[20]. We have also 
highlighted that DN is associated with TNFA gene single 
nucleotide polymorphism (SNP)[20]. In recent times, a 
new functional NFKB1 promoter SNP consisting of a 
insertion/deletion (-94ins/del ATTG) (rs28362491) has 
been identified which can elicit a regulatory effect on the 
NFKB1 gene[21]. Since above mentioned polymorphism 
has been associated with various inflammatory diseases, 
autoimmune diseases and cancers[22], therefore, it is 
worthwhile to further investigate the association of -94 
ins/del ATTG NFKB1 gene SNP with levels of uMCP-1, 
plasma TNF-α and nephropathy risk in subjects with 
T2DM.

MATERIALS AND METHODS
Study design
The present study comprises of total 300 subjects 
visiting Nephrology Outpatient Clinic and Medicine OPD 
at University College of Medical Sciences and Guru Teg 
Bahadur Hospital, Delhi. Subjects were divided into three 
groups of 100 each namely; Group 1: Normoglycemic 
(NG), Group 2: Subjects with T2DM for ≥ 10 years 
without nephropathy (DM), Group 3: Subjects with 
T2DM for ≥ 5 years with nephropathy (DM-CRD). T2DM 
was diagnosed according to revised ADA criteria[23]. 
Detailed clinical history and physical examination were 
recorded. Blood pressure (BP) of subjects was estimated 
using sphygmomanometer in the sitting position after 
a resting period of 10 min. The estimated glomerular 
filtration rate (eGFR) was measured by Modification of 
Diet in Renal Disease Abbreviated Equation (MDRD)[24].

The presence of micro-albuminuria in T2DM sub-
jects was detected by Urine Test 11 MAU dipstick 
(Piramal Diagnostic, sensitivity: 10-15 mg/dL), and all 
participants having proteinuria and micro-albuminuria 
were clubbed in Group 3. All participants with nephro-
pathy were in pre-dialysis stage. Normoglycemic (Group 
1) subjects were recruited from employees of UCMS 
and GTB Hospital with the following criteria: (1) they did 
not have of diabetes mellitus (fasting plasma glucose 
< 100 mg% or postprandial glucose < 140 mg% or 

HbA1c < 5.7%) according to ADA criteria; (2) there was 
no presence of diabetes in their first or second degree 
relatives; and (3) they had normal BP, with systolic and 
diastolic BP not > 120 mmHg and 80 mmHg[25].

To circumvent any possible confounding factors, 
patients having renal disorders (hypertensive nephro-
pathy, chronic glomerular nephritis, chronic interstitial 
disease, ischemic nephropathy, obstructive nephro-
pathy), acute and chronic infections, congestive heart 
failure, malignancy and liver disorder were not included 
into the study. All subjects in Group 3 had retinopathy; 
but participants with macro-vascular complications like 
coronary artery disease and stroke were not included 
into the study. Patients taking renin-angiotension aldo-
sterone system inhibitors, aspirin and vitamin D analo-
gues were advised to discontinue these drugs for a 
period of a week before inclusion in the study since they 
have been found to influence the synthesis of uMCP-1 
and TNF-α. However, patients were prescribed beta-
blockers to control BP in that duration of one week. The 
Institutional Ethics Committee for Human Research 
approved the protocol of this study (approval number-
UCMS/IEC-HR/2010/10). Prior to the inclusion into the 
present study, informed written consent was taken from 
all participants.

Biochemical parameters
Under aseptic conditions fasting venous blood samples 
were withdrawn and collected into EDTA and fluoride 
vials. For glycosylated hemoglobin (HbA1c) 200 µL 
whole blood was preserved at 4 ℃-8 ℃ and processed 
within one week of collection. Blood samples collected 
in EDTA vial was subjected to centrifugation at 3000 
rpm for 10 min in order to separate the plasma. Early 
morning first mid-stream urine sample was collected 
and stored in aliquots at -20 ℃ for estimation of MCP-1, 
albumin and creatinine. 

Routine investigations such as fasting and post-
prandial plasma glucose, urea, creatinine and uric acid 
were carried out using commercially available kits on 
autoanalyser (Olympus AU-400). HbA1c was estimated 
by ion-exchange resin chromatography using com-
mercially available kits (Fortress, United Kingdom). 
Urinary protein excretion was expressed as albumin to 
creatinine ratio. 

Markers of inflammation 
uMCP-1 (Weldon, California; sensitivity less than 7.8 
pg/mL) and plasma TNF-α (Diaclone, France; sensitivity 
less than 8 pg/mL) were estimated by commercially 
available ELISA kit. 

DNA extraction and polymorphism genotyping
Cellular DNA of every individual was extracted from 
200 µL EDTA-anticoagulated peripheral blood sample 
by means of DNA isolation kit (Zymo research, United 
States). The polymerase chain reaction was carried out in 
Thermocycler (Eppendorf Mastercycler Gradient-5331). In 
brief, 0.1 µg of DNA was amplified in a reaction mixture 
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of 20 µL containing 0.5 µmol/L each of the following 
primer pairs (Forward 5’-TGGGCACAAGTCGTTTATGA-3’ 
and Reverse 5’CTGGAGCCGGTAGGGAAG-3’). The 
reaction mixture also contained 0.5 mmol/L (dNTP 
mix), 2 µL (10 × PCR buffer) and 2.0 units Taq DNA 
polymerase, 2 mmol/L MgCl2. The PCR protocol consist 
an initial temperature of 94 ℃ (5 min) followed by 35 
cycles of amplification (30 s at 94 ℃, 45 s at 59 ℃, and 
extension for 1 min at 72 ℃). Final extension step was 
carried out for 2-min at 72 ℃[22].

For the study of the -94 insertion/deletion ATTG SNP 
in NFKB1, PCR product (281/285 bp) was subjected 
to fast digestion with restriction enzyme PfIMI. PCR 
products was treated with enzyme PfIMI in at 37 ℃ for 
1 h and inactivated at 65 ℃ for 20 min. The insertion 
allele (ins) was cut down into two fragments of 45 bp 
and 240 bp by PfIMI restriction enzyme. But, there was 
no cleavage at the deletion allele (del) that has only one 
ATTG at its promoter[22]. The bands of digested products 
were visualized in 2% agarose gel electrophoresis 
stained with ethidium bromide.

Statistical analysis
Demographic profiles and routine investigation was 
compared by χ 2 and Student’s t test and one-way 
ANOVA was used. To associate all the study groups 
with genotype two-way ANOVA followed by post-hoc 
Tukey’s test was used. For association of genotypes with 
uMCP-1 and plasma TNF-α levels, analysis of variance 
was used. Logistic regressions was used to evaluate 
the risk of development of DN at the single SNP level. 
Power of sample size keeping 5% significance level and 
80% power was calculated by genetic power calculator. 
A P value < 0.05 was considered statistically significant 

(two-tailed). All statistical tests were performed using 
SPSS version 20.

RESULTS
Characteristics of the study population
Biochemical and demographic parameters of the 
various study groups are shown in Table 1. There was 
no difference in sex distribution and BMI within all the 
three study groups. The subjects of Group 2 (DM) 
and Group 3 (DM-CRD) were older than Group 1 (NG) 
subjects; however the period of diabetes was more in 
Group 2 (DM) than Group 3 (DM-CRD) which was as 
per our selection criteria. Incidence of hypertension 
was significantly higher in Group 2 (DM) and Group 3 
(DM-CRD) participants as suggested by raised SBP and 
DBP (P < 0.001) when compared to NG. Poor glucose 
control was observed in DM-CRD as compared to DM as 
suggested by significantly higher (P < 0.001) fasting, 
postprandial plasma glucose and HbA1c. Renal function 
tests suggested that blood urea, plasma creatinine, and 
uric acid were significantly higher (P < 0.001) and eGFR 
was decreased (P < 0.001) in Group 3 (DM-CRD) as 
compared to Group 2 (DM).

Distribution of ins/del in study population
The allele frequencies and genotype of the NFKB1 
gene for -94 insertion/deletion ATTG SNP in various 
study groups are shown in Table 2. The distribution per-
centage of ins/ins, ins/del, del/del genotypes in Group 1 
(NG), Group 2 (DM) and Group 3 (DM-CRD) (expressed 
in percentage) were 41%, 49% and 10%; 38%, 48% 
and 14%; and 61%, 33% and 6% respectively. The 
frequency of del/del genotype was significantly lower (P 
< 0.001) in Group 3 (DM-CRD) as compared to Group 
2 (DM). However, allele frequencies of -94 insertion/
deletion ATTG were 65.5%/34.5% in Group 1 (NG), 
62%/38% in Group 2 (DM) and 77.5%/22.5% in Group 
3 (DM-CRD).

Relationship between the -94 ins/del AGGT SNP with 
inflammatory markers and disease risk
Correlation of -94 ins/del AGGT SNP with levels of 

  Variables NG
(n  = 100)

DM
(n  = 100)

DM-CRD
(n  = 100)

  Age (yr)   46.0 ± 4.0 56.40 ± 3.5 55.7 ± 4.2
  Sex ratio (male/female)    52/48 54/46 52/48
  Duration of DM (yr) -   12.7 ± 1.5     8.1 ± 2.3d

  BMI (kg/m2)   20.1 ± 1.7   21.1 ± 2.1 21.6 ± 3.4
  SBP (mmHg) 118.1 ± 0.5  138.0 ± 2.1b 137.7 ± 2.8b

  DBP (mmHg)   75.2 ± 1.0    81.6 ± 1.9b   82.8 ± 0.0b

  Fasting glucose (mg/dL)   82.4 ± 3.1  153.5 ± 3.5b   184.3 ± 9.2b,d

  Postprandial glucose (mg/dL) 118.2 ± 2.4    201.7 ± 10.1b     261.1 ± 12.2b,d

  HbA1c (%)     5.11 ± 0.46      7.10 ± 0.25b       9.16 ± 0.16b,d

  Urea (mg/dL)   31.5 ± 5.5   30.7 ± 5.8     93.2 ± 4.8b,d

  Creatinine (mg/dL)    0.83 ± 0.23     0.90 ± 0.20       3.7 ± 1.5b,d

  Uric acid (mg/dL)    4.2 ± 0.8     4.9 ± 0.6       9.1 ± 0.8b,d

  eGFR (mL/min per 1.73 m2)  99.1 ± 0.7   96.4 ± 0.6   51.2 ± 0.9d

  Urinary albumin/creatinine - -    0.42 ± 0.35

Table 1  The baseline demographic and biochemical parameters 
in various study groups

bSignificantly different from Normoglycemic at P < 0.001; dSignificantly 
different from diabetic patients without nephropathy at P < 0.001. Data 
are expressed as mean + SD. NG: Normoglycemic; DM: Diabetes mellitus 
without nephropathy; DM-CRD: Diabetic nephropathy; BMI: Body 
mass index; SBP and DBP: Systolic and diastolic blood pressure; eGFR: 
Estimated glomerular filtration rate.

NG (n  = 100)
n  (%)

DM (n  = 100)
n  (%)

DM-CRD (n  = 100)
n  (%)

  ins/ins  41 (41)   38 (38)  61 (61)
  ins/del  49 ( 49)   48 (48)  33 (33)
  del/del  10 (10)   14 (14)   06b (06)
  ins allele   131 (65.5) 124 (62)   155 (77.5)
  del allele    69 (34.5)   76 (38)     45 (22.5)

Table 2  The genotype and allele frequencies of NFKB1 gene 
for -94 insertion/deletion ATTG polymorphism in different 
study groups

bSignificantly different from diabetic patients without nephropathy at P < 
0.001. NG: Normoglycemic; DM: Diabetes mellitus without nephropathy; 
DM-CRD: Diabetic nephropathy.
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uMCP-1 and plasma TNF-α have been studied and the 
results are shown in Table 3. The -94 ins allele were 
associated with increased levels of uMCP-1 (P = 0.026) 
and plasma TNF-α (P = 0.030) in the disease study 
groups, i.e., Group 2 (DM), Group 3 (DM-CRD).

The associations at the level of genotype is shown in 
Table 4. Highly significant association was observed for 
-94 ins/del AGGT polymorphism in subjects with Group 
3 (DM-CRD) in comparison to Group 1 (NG); P = 0.022. 
In our present study, -94 ins SNP was found to increase 
risk for the development of DN by 1.91-fold in subjects 
with diabetes (OR = 1.91, 95%CI: 1.080-3.386, P = 
0.025).

DISCUSSION
Polymorphism in the NFKB1 promoter region at position 
-94 ins/del AGGT has been correlated with many long 
standing inflammatory diseases like autoimmune dis-
eases such as rheumatoid arthritis, asthma, AIDS, 
cancers and various diabetic complications[26,27]. Our 
study is the first to report the association of above 
mentioned polymorphism with DN in North Indian po-
pulation. In the current study, we observed that the 
frequency distribution of ins/del is maximum in NG and 
DM subjects followed by ins/ins, with least distribution 
of del/del in the same. However the trend was different 
in DM-CRD subjects with respect to ins/del genotype 
which was less as compared to ins/ins this group. The 
frequency of different genotypes observed in the present 
study were in accordance with studies on NFKB1 
polymorphism in healthy volunteer in different ethnic 
population like Turkish[22], Caucasians[28], English[29], 
Polish[30]. But our results were not in agreement with 
healthy Chinese population[28]. When our findings were 
compared with studies on inflammatory diseases like 
cancer, they are in accordance with a studies conducted 
in Asian by Huo et al[31] and Zhou et al[32]. However our 

results were in contrast with a genomic study on cancer 
conducted by Yang et al[28] in 2014. The dissimilarity 
of results could be due to diverse geographical distri-
bution and ethnicity between our study and theirs 
was different, which could result in diverse genetic 
background.

Latest evidence has shown that the production of 
MCP-1 by kidney affected by diabetes along with TNF-α 
is a major cause of inflammation, renal injury and 
fibrosis in DN[10,17]. The present study is the foremost 
one to document the correlation of -94 ins/del AGGT 
SNP with levels of inflammatory markers namely 
uMCP-1 and plasma TNF-α in DN from North Indian 
patients. In our previous study, we have observed that 
plasma TNF-α and uMCP-1levels were significantly 
raised in patients with T2DM and so more in patients 
with DN[19]. To explicate the role of NFKB1 gene SNP 
in the development of DN, -94 ins/del AGGT SNP were 
analyzed in various study, i.e., Group 2 (DM) and Group 
3 (DM-CRD) and further correlated with measured 
inflammatory markers like uMCP-1 and plasma TNF-α 
levels. Interestingly, this study has also shown that ins 
allele was significantly associated with increased urinary 
MCP-1 and plasma TNF-α levels in NG as well as patient 
groups. However, there is no report in literature to com-
pare our results. 

A recent study has shown that TNF-α stimulates the 
MCP-1 production via NF-κB signalling pathway in rat 
astrocyte cultures[33]. TNF-α was found to increase p65 
and phosphorylated p65 levels in nuclear extracts of 
rat astrocytes, hence augmenting MCP-1 levels[33]. This 
supports our finding that increased levels of TNF-α are 
associated with increased levels of uMCP-1.

Genetic variations are known to play a vital role 
in determining risk of DN. A number of studies have 
investigated the relationship of ins allele of -94 ins/
del AGGT polymorphism with various inflammatory 
diseases. Till date not a single study has tried to evaluate 
the association between this polymorphism and DN 
risk. Our study is first to document that patients with 
T2DM having ins/ins genotype were found to have 
increased risk of developing nephropathy. Latest studies 
have reported that p50 null mice have a significantly 
reduced inflammatory response in various models 
of inflammation such as asthma[34], arthritis[35], and 
autoimmune encephalomyelitis[36]. A similar study 
conducted in sporadic colorectal cancer (CRC)[37] and 
epithelial ovarian cancer (EOC)[31] has supported 

  Inflammatory 
  marker

Groups NG
(n  = 100)

DM
(n  = 100)

DM-CRD
(n  = 100)

P  
value

  uMCP-1 
  (pg/mg 
  creatinine)

Total 130.00 ± 
42.22

271.00 ± 120.01 5632.70 ± 
1007.20a,b

del/del 85.1 ± 9.2  200.6 ± 66.5   4609.9 ± 900.6 P = 
0.026ins/del 110.9 ± 15.6 278.9 ± 105.9   5879.9 ± 1016.3

ins/ins 166.8 ± 26.8 302.2 ± 100.1   6405.1 ± 1550.6
  Plasma 
  TNF-α
  (pg/mL)

Total 15.55 ± 2.22  16.51 ± 3.75    21.38 ± 3.67a,b

del/del   8.27 ± 1.06  10.21 ± 1.32     17.31 ± 1.17 P = 
0.030ins/del 11.55 ± 0.05  14.05 ± 0.18     19.31 ± 0.44    

ins/ins 15.08 ± 1.15  16.36 ± 1.20     23.12 ± 0.70

Table 3  Interaction analysis of -94 ins/del ATTG polymor-
phism with inflammatory markers

aSignificantly different from Normoglycemic at P < 0.001; bSignificantly 
different from diabetic patients without nephropathy at P < 0.001. 
uMCP-1 levels, plasma TNF-α levels are expressed as mean + SD. NG: 
Normoglycemic; DM: Diabetes mellitus without nephropathy; DM-CRD: 
Diabetic nephropathy. 

  Genotype OR 95%CI P  value

  DM vs NG ref 1.04 0.607-4.987 0.887
  DM-CRD vs NG ref 1.95 1.101-3.467 0.022
  DM-CRD vs DM ref 1.91 1.080-3.386 0.025

Table 4  Association between -94 ins/del ATTG polymorphism 
in the NFKB1 gene and diabetic nephropathy at the genotype 
level

Ref: Referencegroup. 
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our findings which suggested that ins/ins genotype 
contribute to significantly increased risk of CRC and 
EOC. The probable mechanism of -94 ins/del AGGT 
polymorphism leading to increased risk of developing 
DN is explained in Figure 1. In almost all cell types, NF-
κB complexes are typically localized in the cytoplasm 
where they bind to IKB inhibitory proteins. However, 
stimulation with hyperglycemia induced ROS and TNF-α 
leads to rapid phosphorylation of IKB via I-κB kinases 
complex which is then degraded by ubiquitin-proteosome 
pathway. On the other hand, simultaneously -94 ins/del 
AGGT polymorphism might lead to increased synthesis 
of p50 mRNA. Hence there will be increased production 
of p50/p65 hetrodimer complex which is a well known 
proinflammatory molecule, since p50/p65 hetrodimer 
acts on its downstream proinflammatory targets viz: 
MCP-1 and TNF-α, leading to over production of MCP-1 
and TNF-α. Thus, there occurs a viscous cycle, i.e., 
MCP-1 is a positive regulator of TNF-α and vice versa. 

The above mentioned probable hypothesis might lead 
to increased risk of developing renal damage in T2DM. 
However results of a recent study from China[38] in 
bladder cancer is in contradiction to our findings which 
could be due to ethnic and geographical differences. 
Furthermore, the sample size of our study was fairly 
small than aforementioned bladder cancer study. 

The results of the current study suggest that the 
NFKB1 promoter -94 ins/del AGGT SNP is associated 
with increased possibility of developing nephropathy 
in patients with diabetes. This SNP may be considered 
as genetic markers for susceptibility to develop nephro-
pathy in patients with T2DM. The limitation of the study 
is the small sample size. Therefore, further evaluation 
is necessary in big sample size to look for the possibility 
of this polymorphisms as potential genetic markers in 
the near future. This would help to identify patients 
with type 2 diabetics who may be at higher risk of 
developing nephropathy.

Glycemic milieu

TNF-α ROS  

Acts on cell membrane receptor

Activates IκB kinase complex, IKK

Phosphorylates IκBα and its dissociation from heterodimer p50/p65

Nuclear translocation of NF-κB (heterodimer p50/p65)

NF-κB binds to promoter of genes (RelA ) and promotes translation 

p65
P50

p50/p65

TNF-α MCP-1

Damage to renal tissue Diabetic nephropathy

Ins allele, rs28362491 NFKB1  gene

Increase expression of NFKB1

+

+

Figure 1  NFKB1 gene and inflammatory markers: Probable mechanisms in the pathogenesis of diabetic nephropathy. Hypoglycemia induced ROS 
and TNF-α leads to activation of IKK. IKK causes phosphorylation of IκBα bound to p50/p65. Phosphorylated IκBα dissociate from  p50/p65 leading to nuclear 
translocation of unbound heterodimer p50/p65 (NF-κB). Binding of NF-κB to promoter gene causes translation of p65. Ins allele, rs28362491 NFKB1 gene, if present, 
causes increase expression of p50. Hence there is increased production of p50/p65 heterodimer complex. This heterodimer acts on its downstream proinflammatory 
targets viz: MCP-1 and TNF-α  leading to its synthesis. MCP-1 is a positive regulator of TNF-α and vice versa. Both MCP-1 and TNF-α causes renal damage 
leading to development of Diabetic nephropathy. ROS: Reactive oxygen species; TNF-α: Tumor necrosis factor-alpha; IKK: IκB kinase complex; MCP-1: Monocyte 
chemoattractant protein-1.
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COMMENTS
Background
Type 2 diabetes mellitus (T2DM) is considered as a long standing inflammatory 
disease. Nuclear factor-kappa B (NF-κB) controls the expression of numerous 
genes affecting inflammation, immune response. Immunogenic and inflammatory 
cytokines like monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis 
factor-alpha (TNF-α) plays a crucial role in the pathogenesis of micro-vascular 
complication of T2DM, i.e., diabetic nephropathy (DN) and clinical outcome.

Research frontiers
In spite of the present advances in our knowledge about the etiopathogenesis 
of DN, the intricate mechanisms leading to the development of renal injury 
from chronic hyperglycemia are not yet fully understood. NFKB1 promoter 
polymorphism -94 ins/del ATTG has been associated with inflammatory diseases, 
autoimmune diseases and cancers. However, its role in the development of 
T2DM and DN has not been explored till date. The authors hypothesized that 
the -94 ins/del ATTG polymorphism would affect the levels of urinary MCP-1 and 
plasma TNF-α and therefore might be culprit in developing DN.  

Innovations and breakthroughs
The authors have recently reported that -94 ATTG ins allele was associated with 
significantly increased levels of urinary MCP-1, plasma TNF-α and was found to 
increase risk for the development of DN by 1.91-fold in subjects with diabetes.

Applications
-94 ins/del AGGT polymorphisms can be considered as genetic marker for 
identifying those more susceptible and provide suitable interventions to delay the 
progression of DN. This study provides a ground for the development of newer 
anti-inflammatory therapeutic agents that may have potential to affect primary 
mechanisms contributing to the pathogenesis of DN.

Terminology
DN: Diabetic nephropathy; NF-κB: Nuclear factor-kappa B; NFKB1: Nuclear 
factor-kappa B1 gene; T2DM: Type 2 diabetes mellitus; TNF-α: Tumor necrosis 
factor-alpha; uMCP-1: Urinary Monocyte chemoattractant protein-1.

Peer-review
The manuscript is well informative.
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Abstract
AIM
To investigated the relationship between exercise-
induced ambulatory blood pressure measurement 
(ABPM) abnormalities in type 1 diabetes mellitus (T1DM) 
adolescents. 

METHODS
We conducted a case-control at the National Obesity 
Center of the Yaoundé Central Hospital, Cameroon. We 
compared 24 h ABPM and urinary albumin-to-creatinine 
ratio (ACR) at rest and after a standardized treadmill 
exercise between 20 Cameroonian T1DM patients and 
20 matched controls. T1DM adolescents were aged 
12-18 years, with diabetes for at least one year, without 
proteinuria, with normal office blood pressure (BP) 
and renal function according to the general reference 
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population. Non-diabetic controls were adolescents of 
general population matched for sex, age and BMI.

RESULTS
Mean duration of diabetes was 4.2 ± 2.8 years. The 
mean 24 h systolic blood pressure (SBP) and diastolic 
blood pressure (DBP) were respectively 116 ± 9 mmHg 
in the diabetic group vs  111 ± 8 mmHg in the non-
diabetic (P  = 0.06), and 69 ± 7 mm Hg vs  66 ± 5 mm 
Hg (P  = 0.19). There was no difference in the diurnal 
pattern of BP in diabetes patients and non-diabetic 
controls (SBP: 118 ± 10 mmHg vs  114 ± 10 mmHg, P  
= 0.11; DBP: 71 ± 7 mmHg vs 68 ± 6 mmHg, P = 0.22). 
Nighttime BP was higher in the diabetic group with 
respect to SBP (112 ± 11 mmHg vs  106 ± 7 mmHg, P  
= 0.06) and to the mean arterial pressure (MAP) (89 
± 9 mmHg vs  81 ± 6 mmHg, P  = 0.06). ACR at rest 
was similar in both groups (5.5 mg/g vs  5.5 mg/g, P  = 
0.74), but significantly higher in diabetes patients after 
exercise (10.5 mg/g vs  5.5 mg/g, P  = 0.03). SBP was 
higher in patients having exercise-induced albuminuria 
(116 ± 10 mmHg vs  108 ± 10 mmHg, P  = 0.09). 

CONCLUSION
Exercise-induced albuminuria could be useful for early 
diagnosis of kidney damage in adolescents with T1DM.

Key words: Albuminuria; Blood pressure; Ambulatory 
blood pressure measurement; Exercise; Type 1 diabetes

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Diabetic nephropathy (DN) is a major com-
plication of type 1 diabetes mellitus (T1DM). Therefore, 
strategies for early detection are of critical importance. 
Ambulatory blood pressure measurement is useful 
for detection of precocious abnormalities in the occur-
rence of DN and exercise-induced albuminuria has 
been proposed as a potential predictor of DN. Our 
study therefore aimed to investigate the relationship 
between exercise-induced albuminuria and ambulatory 
blood pressure measurement abnormalities in T1DM 
Cameroonian adolescents. We found that T1DM patients 
had higher nocturnal and 24 h blood pressure figures 
than non-diabetics suggesting that exercise-induced 
albuminuria could be useful early detection of diabetes 
kidney injuries in T1DM. 

Tadida Meli IH, Tankeu AT, Dehayem MY, Chelo D, Noubiap JJN, 
Sobngwi E. Exerciseinduced albuminuria vs circadian variations 
in blood pressure in type 1 diabetes. World J Diabetes 2017; 8(2): 
7479  Available from: URL: http://www.wjgnet.com/19489358/
full/v8/i2/74.htm  DOI: http://dx.doi.org/10.4239/wjd.v8.i2.74

INTRODUCTION
Diabetes nephropathy is the major life-threatening 
complication of type 1 diabetes mellitus (T1DM)[1,2]. 

Abnormal albumin excretion has been shown to predict 
the development of clinically significant nephropathy 
in T1DM. Indeed, persistent minimal elevation of 
albuminuria at rest predicts the development of more 
severe proteinuria and clinical diabetic nephropathy, 
which frequently progresses to renal failure[3]. In T1DM, 
nephropathy develops in 30% to 40% of cases and 
impaired renal function or end-stage kidney disease  
affect up to a third of patients[4]. Thus, strategies for 
early detection and for preventative interventions are of 
critical importance since interventions at these late stages 
of disease may only slow but not completely arrest 
the inexorable progression towards renal failure[5,6]. In 
this direction, it has been shown that physical exercise 
can stimulate albuminuria in diabetes patients and 
can be a useful provocative test to detect early renal 
abnormalities[7]. However, there is still limited evidence 
on its value for early detection of renal disease in T1DM.

Previous studies has proven that during exercise, 
urinary albumin excretion rate is more increased in 
long term T1DM patients thus, at risk of developing dia-
betes nephropathy than in general population[8]. In the 
contrary, some evidence suggest that the level of albu-
min excretion during exercise is related to the quality of 
metabolic control; for example, exercise-induced micro-
albuminuria is more pronounced in newly diagnosed 
patients, and this abnormality is reversed by insulin 
treatment. Exercise-induced microalbuminuria generally 
is not well correlated with the duration of disease and 
does not predict clinical nephropathy[9]. On the other 
hand, the contribution of night-time blood pressure (BP) 
on the onset of nephropathy in diabetic patients is now 
established[10]. Therefore ambulatory blood pressure 
monitoring (ABPM) could be proposed as an useful tool 
for early detection of diabetic nephropathy[11,12]. This 
study aimed to investigate the relationship between 
exercise-induced albuminuria and ABPM abnormalities 
in early detection of diabetic nephropathy in adolescents 
with T1DM from Cameroon.

MATERIALS AND METHODS
Study subjects
This case-control study was carried out at the National 
Obesity Center of the Yaoundé Central Hospital, the 
reference diabetes center in the town. Our population 
was made of two groups, T1DM adolescents and non-
diabetic controls. T1DM patients were aged 12-18 
years, with diabetes for at least one year; without 
proteinuria, with normal office BP and renal function 
according to the general reference population. Non-
diabetic controls were adolescents of general population 
matched for sex, age and BMI. We excluded patients 
and controls with an important night activity, those 
receiving drugs for hypertension or any other drugs able 
to modify albuminuria, those with contra-indication to 
exercise or presenting signs of urinary tract infection as 
well as those having fever and pregnant women. 
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Procedure and investigations
The procedure was made of an inclusion visit and two 
exploration visits. Within 2 wk following an information 
visit, for all eligible participants, we performed a careful 
clinical exam including BP measurement and a urinary 
dipstick. We enrolled 40 participants, 20 in each group.

All exploration visits were conducted in the morning 
between 8:00 and 10:00. After arrival, participants 
were invited to stay in sitting position for at least five 
minutes. Then, clinical measurement of BP was done 
three time using an automated sphygmomanometer 
Omron HEM-705 CP (Omron Corporation, Tokyo, Japan) 
placed on the left arm raised itself at the heart level. 
The average of three measures was considered for 
analysis. Weight and height were respectively valued 
to the nearest 0.5 unit using a mechanical scale and a 
measuring rod and body mass index (BMI in kg/m²) 
calculated as weight (cm)/[height (m) × height (m)]. 
A dipstick was done to assess proteinuria and considered 
positive for at least 1+.

ABPM was carried out on twenty four hours using 
an automatic portable, light weight monitor device the 
i-MAPA® CE 004 1.1 TM (High-tech Medical St Louis, 
Paris) which performs measurements every 15 min 
during daytime (07:00 to 22:00) and twice an hour 
during night time defined from 22:00 to 07:00. Device 
was activated and the two first measures performed 
in the laboratory to ensure functionality. Detailed 
information on the operation and use of the device were 
then given to the participant who then returned to his 
daily activities. At least 70% of valid measurements 
were considered for interpretation.

The exercise protocol was developed according to 
the Hierarchy of individual calibration levels for heart 
rate and accelerometry to measure physical activity[13]. 
It was made of 1 km race on a treadmill at 5.8 km/h 
and was divided in two phases. The first phase was 
made of a 3 min gathering speed up to 3.2 km/h, 
followed by an acceleration of 0.33 km/h every 6 min. 
The second phase was a walking step between 5.2-5.8 
km/h on the treadmill.

Albuminuria was calculated using albumin-to-
creatinine ratio in order to avoid effect of exercise on 
urinary concentration and expressed in mg/g. First 
void urine collection was used for rest albuminuria and 
a random sample urine was collected within the 20 
min following physical exercise to measure exercise-
induced albuminuria. Albuminuria or exercise-induced 
albuminuria was diagnosed on the basis of a urinary 
albumin excretion rate greater than 20 but less than 200 
mg/g[14]. Adverse events such as hypoglycemia during 
physical exercise or exercise intolerance, were closely 
monitored.

Statistical analysis 
Data acquisition was done by Epi-data 3.1 software 
and statistical analysis was performed using Stata 
12.0 software. Continuous variables are expressed as 
means with standard deviation (SD) where appropriate, 

and categorical variables as count (percentage). The 
Spearman rank coefficient was used to test correlations. 
The c2 test and Mann-Whitney rank sum test were used 
to test associations between qualitative variables and 
difference between two respectively. A P value ≤ 0.05 
was considered statistically significant. The statistical 
methods of this study were reviewed by Mr. Sontsa.

RESULTS
General characteristics 
We enrolled 40 participants, 24 males, average age of 
16 ± 2 years. The mean BMI of diabetes patients was 
22.6 ± 2.9 kg/m² vs 22.7 ± 3.3 kg/m² for non-diabetic. 
Average duration of diabetes was 4.2 ± 2.8 years with 
mean glycated hemoglobin of 9.9 ± 2.8. Nine diabetes 
patients had a family history of hypertension vs six in 
the non-diabetic group.

ABPM measurement of study population
Diabetes participants had lightly higher BP values 
compared to non-diabetic on every component (Table 1). 
Thus, 24 h SBP measurement in the diabetic group was 
116 ± 9 mmHg vs 111 ± 8 mmHg for non-diabetics at 
borderline of significance (P = 0.06) while difference in 
DBP of two groups was non-significant (69 ± 7 mmHg vs 
66 ± 5 mmHg; P = 0.19). In keeping with that, diurnal 
BP figures were slightly higher in the diabetic group but 
with a non-significant difference (SBP: 118 ± 10 mmHg 
vs 114 ± 10 mmHg, P = 0.11; DBP: 71 ± 7 mmHg vs 
68 ± 6 mmHg; P = 0.22). One important finding was 
the elevated night time BP in diabetes adolescents with a 
borderline significance for SBP (112 ± 11 mmHg vs 106 
± 7 mmHg, P = 0.06) and MAP (85 ± 9 mmHg vs 81 ± 
6 mmHg, P = 0.06). 

Urinary albumin excretion of study population
In adolescents with diabetes, 06/20 (30%) developed 
abnormal exercise-induced albuminuria but none in the 
group of adolescents without diabetes. Urinary albumin 

  Variables Type 1 diabetic 
patients (n  = 20)

Non-diabetic patients 
(n  = 20)

P  value

  24 h BP
     SBP 116 ± 9 111 ± 8 0.06
     DBP   69 ± 7   66 ± 5 0.19
     PP   48 ± 8   45 ± 5 0.11
  Diurnal BP
     SBP   118 ± 10   114 ± 10 0.11
     MAP   92 ± 7   89 ± 7 0.15
     DBP   71 ± 7   68 ± 6 0.22
  Nocturnal BP
     SBP   112 ± 11 106 ± 7 0.06
     MAP   85 ± 9   81 ± 6 0.06
     DBP   64 ± 9   60 ± 6 0.11

Table 1  Ambulatory blood pressure measurement of the 
diabetes and non-diabetes patients

SBP: Systolic blood pressure; DBP: Diastolic blood pressure; MAP: Mean 
arterial blood pressure; PP: Pulse pressure.
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excretion at rest was similar in both groups (5.5 mg/g 
vs 5.5 mg/g, P = 0.74). After exercise, we found a 
significant increase in urinary albumin excretion in 
diabetes patients as compared to non-diabetics (10.5 
mg/g vs 5.5 mg/g, P = 0.03). 

Relation between BP profile and albuminuria at rest and 
after exercise 
We compared diabetes adolescents presenting exercise-
induced albuminuria after exercise to those without 
albuminuria (Table 2). We found that diabetes patients 
with exercise-induced albuminuria had higher but non-
significant nighttime SBP figures than those exercise-
induced albuminuria (116 mmHg vs 108 mmHg, P = 
0.09) while DBP were similar. In contrast, 24 h SBP and 
DBP were similar in both as well as diurnal SBP and 
DBP. 

DISCUSSION
This study aimed to investigate the relationship bet-
ween exercise-induced albuminuria and circadian BP 
abnormalities revealed by ABPM in non proteinuric 
T1DM adolescents. In order to achieve this objective, 
we compared young T1DM patients to non-diabetic 
matched controls. We found that nocturnal SBP of 
diabetic patients was slightly higher than that of non-
diabetics as well as 24 h SBP with borderline signifi-
cance. Most T1DM studies on albuminuria disease have 
been done in Caucasians[14-17]. This study confirms 
these findings in Africans. This increase in nocturnal 
SBP values and 24 h SBP already found by others 
studies suggest the existence in this group of probable 
subclinical kidney injuries. Indeed, it was demonstrated 
that diabetes patients with kidney injury or subclinical 
diabetic nephropathy had a tendency to higher BP 
than the general population[14-18]. Similarly, diabetes 
patients in our study have a tendency to increased 
nocturnal BP figures in comparison to non-diabetics 
leading to a reduction in the difference of day-night BP 
evaluated by dipping[19,20]. This anomaly is found more 
frequently in diabetes patients compared than in the 
general population and is attributed to the presence of 

kidney damage, still subclinical, but already leading to 
an increase in renal and cardiovascular risk[18]. Thus, the 
studies comparing individuals with impaired nocturnal 
decline in BP and those with normal nocturnal BP have 
revealed that individuals with insufficient decrease of BP 
and therefore higher values of BP during the night will 
present in future monitoring a more rapid degradation 
of renal function marked by a significant decrease in 
creatinine clearance[21]. In the same sense, these studies 
did not find any difference between daytime BP as well 
as diastolic BP which was also to be the case in our 
study where daytime BP were similar in both groups 
of participants[18,20]. However, unlike these studies, 
we found 24 h BP figures slightly higher in diabetes 
individuals but still of borderline significance. This could 
be attributed to the impact of nighttime BP on the 24 h 
BP and would be a reflection of the nocturnal difference 
since for similar diurnal BP, if the nocturnal BP is elevated 
in one group, then it becomes logical that the 24 h BP 
which is the average daytime and nighttime BP appears 
to be also more elevated.

Secondly, our study showed that for similar or even 
identical values   of albuminuria at rest, diabetes patients 
having an increase in nocturnal BP and therefore pro-
bable subclinical kidney injuries had a significantly 
increase in exercise-induced albuminuria in comparison 
to non-diabetic individuals. This suggests that exercise-
induced albuminuria increases with the existence of 
renal alterations revealed by abnormal nocturnal BP and 
therefore could be used to detect patients with these 
abnormalities. This finding support the assumption that 
exercise-induced albuminuria could serve as a marker 
of early diabetic renal injuries and allow detection or at 
least help to suspect the existence of subclinical diabetic 
nephropathy still undetectable by albuminuria at rest. 
This had been suggested in 1995 by O’Brien who found 
during a prospective follow-up on a half-decade that 
patients having abnormal exercise-induced albuminuria 
were those who would develop a clinical albuminuria at 
rest and therefore faster diabetic nephropathy[22-25]. But 
to the best of our knowledge, nobody has so far studied 
the relationship between exercise-induced albuminuria 
and nocturnal abnormalities of BP in type 1 diabetes 
patients. This first finding then proves very encouraging 
since it opens the way to new opportunities and show 
new research fields to explore.

Finally, we compared the diurnal and nocturnal BP 
values   of patients who developed exercise-induced 
albuminuria to those of other participants without this 
abnormality. We found that patients with exercise-
induced albuminuria had higher non-significant figures of 
BP during the night than those without this abnormality. 
These data support the hypothesis emitted above that 
exercise induced-albuminuria could be used to iden-
tify T1DM patients with abnormal nocturnal BP and 
therefore at risk of developing diabetic nephropathy or 
already presenting subclinical damage due to diabetic 
nephropathy. However, these findings casually refer to 
other studies on the subject with larger population study 

UAE < 20 mg/g UAE > 20 mg/g P  value

  24 h BP
     SBP 113 ± 9 119 ± 10 0.14
     DBP   67 ± 6 70 ± 8 0.51
  Diurnal BP
     SBP   116 ± 10 120 ± 10 0.32
     DBP   70 ± 5 72 ± 8 0.51
  Nocturnal BP
     SBP   108 ± 10 116 ± 10 0.09
     DBP   61 ± 8 66 ± 9 0.17

Table 2  Comparison of blood pressure values for albuminurics 
and non albuminurics patients

SBP: Systolic blood pressure; DBP: Diastolic blood pressure; UAE: Urinary 
albumin excretion.

Tadida Meli IH et al . Exercise-induced albuminuria vs  BP in T1DM
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and ideally with a prospective follow-up in order to clearly 
establish the link between exercise-induced albuminuria 
and renal prognosis and cardiovascular evaluated by 
circadian BP on ABPM and especially nocturnal BP 
abnormalities in T1DM[26-28].

In summary, T1DM patients having an increase 
in nocturnal BP exhibit an increase exercise-induced 
albuminuria and patients developing abnormal exercise-
induced albuminuria have higher figures of nocturnal 
BP than others. These findings strongly suggest that 
exercise-induced albuminuria could to be use identify 
diabetes patients with subclinical renal damage, there-
fore it would be useful in the early diagnosis of nephro-
pathy in T1DM. 
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Abstract
AIM
To design a fuzzy expert system to help detect and 
diagnose the severity of diabetic neuropathy. 

METHODS
The research was completed in 2014 and consisted 
of two main phases. In the first phase, the diagnostic 
parameters were determined based on the literature 
review and by investigating specialists’ perspectives (n 
= 8). In the second phase, 244 medical records related 
to the patients who were visited in an endocrinology 
and metabolism research centre during the first six 
months of 2014 and were primarily diagnosed with 
diabetic neuropathy, were used to test the sensitivity, 
specificity, and accuracy of the fuzzy expert system.

RESULTS
The final diagnostic parameters included the duration 
of diabetes, the score of a symptom examination based 
on the Michigan questionnaire, the score of a sign 
examination based on the Michigan questionnaire, the 
glycolysis haemoglobin level, fasting blood sugar, blood 
creatinine, and albuminuria. The output variable was 
the severity of diabetic neuropathy which was shown as 
a number between zero and 10, had been divided into 
four categories: absence of the disease, (the degree 
of severity) mild, moderate, and severe. The interface 
of the system was designed by ASP.Net (Active Server 
Pages Network Enabled Technology) and the system 
function was tested in terms of sensitivity (true positive 
rate) (89%), specificity (true negative rate) (98%), and 
accuracy (a proportion of true results, both positive and 
negative) (93%).

CONCLUSION
The system designed in this study can help specialists 
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and general practitioners to diagnose the disease more 
quickly to improve the quality of care for patients. 

Key words: Expert systems; Fuzzy logic; Artificial inte-
lligence; Diabetes mellitus; Diabetes complications; 
Diabetic neuropathies

© The Author(s) 2017. Published by Baishideng Publishing 
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Core tip: In this study, an expert system was designed 
for diagnosing diabetic neuropathy. This system can 
help specialists to diagnose the disease more quickly 
by using the most common diagnostic parameters. 
Even general practitioners can use this system in 
remote areas to improve the quality of care for patients 
with diabetes. With it, patients will no longer need to 
undertake complex procedures, and the care plan can 
be applied at the right time. 

Rahmani Katigari M, Ayatollahi H, Malek M, Kamkar Haghighi 
M. Fuzzy expert system for diagnosing diabetic neuropathy. 
World J Diabetes 2017; 8(2): 8088  Available from: URL: http://
www.wjgnet.com/19489358/full/v8/i2/80.htm  DOI: http://
dx.doi.org/10.4239/wjd.v8.i2.80

INTRODUCTION
One of the biggest challenges currently experienced 
by healthcare organizations is the increasing burden 
of chronic diseases posing serious threats to public 
health in developing countries[1]. Diabetes is one of 
the world’s most common and costly chronic diseases, 
and the number of patients suffering from diabetes has 
been showing an increasing trend in many countries[2]. 
This can be attributed to population growth, aging, 
urbanization, prevalence of obesity, and a sedentary 
lifestyle[2,3]. Long-term complications of diabetes develop 
gradually and might be disabling or life-threatening - 
for example, vascular and tissue injuries caused by the 
progression of diabetes can lead to serious complications, 
such as retinopathy, nephropathy, cardiovascular dis-
ease, cerebrovascular disease, peripheral vascular 
disease, metabolic disease, and diabetic foot ulcer[4,5]. 
However, the most common complication of diabetes 
is impairment of the peripheral neural system, which is 
known as diabetic neuropathy and a major problem with 
different signs and symptoms. Compared with other 
diabetes complications, it is one of the first reasons for 
hospitalizing patients with diabetes[6]. The severity of 
pain, decreased or lack of sensation, increased risk of 
foot ulceration, and amputation are the consequences of 
diabetic neuropathy[7].

Diabetic peripheral neuropathy is usually seen in 
more than 10% of patients with type II diabetes. Early 
diagnosis and treatment is the first step to reduce the 
incidence of foot ulcers and amputations[8]. The main 

cost of this disease is related to organ amputation. 
The risk of lower extremity amputation in patients is 
significantly high in case of this disease. Nevertheless, 
almost 85% of amputations are preventable by early 
detection of the disease, early intervention, good control 
of diabetes, and patient education[9]. Moreover, several 
studies show that neuropathy may negatively affect the 
quality of life for patients with diabetes[10,11].

Owing to the high prevalence of neuropathy among 
patients with diabetes, it is necessary to conduct annual 
screening and further evaluation as well as to devise 
a plan for managing the disease. However, one of 
the major problems associated with the diagnosis of 
diabetic neuropathy is the lack of a reliable clinical scale 
for grading the severity of the disease[12]. A variety of 
methods are used to detect peripheral neuropathy. 
These include the nerve conduction velocity test, the 
vibration perception threshold, the monofilament test, 
the clinical neuropathy examination, the Toronto clinical 
scoring system, and the Michigan neuropathy screening 
instrument (MNSI)[13]. Other than clinical examination, 
laboratory tests, such as haemoglobin A1c level, fasting 
blood sugar, and oral glucose tolerance test, along with 
risk factors like age, sex, renal disease, and smoking 
need to be considered[14].

It is notable that the boundary between illness 
and health is not clear in diabetic neuropathy, and it is 
difficult to express clinical diagnosis as the lack of or the 
existence of the disease. Since the disease develops 
on a continuous basis, two-valued logic cannot be 
used to express this continuity anymore[6]. Therefore, 
new methods for diagnosing the disease have been 
considered[15]. Among these methods, special attention 
has been paid to the development of information 
technology applications, decision support systems, and 
fuzzy expert systems[16,17]. The fuzzy expert system is 
a new version of expert systems that uses fuzzy logic 
for data processing. In a fuzzy expert system, the 
inference is conducted by a set of membership functions 
and fuzzy rules rather than by the rules of two-valued 
logic[18]. The Fuzzy expert systems are used to describe 
uncertain phenomena because real-world phenomena 
are much more complex than an exact and absolute 
description[19,20]. The ability to implement human science 
through specific linguistic concepts and fuzzy rules, 
non-linearity, adaptability of these systems, and the 
level of accuracy are the most important features of 
these systems[21]. Although fuzzy expert systems have 
been designed for different purposes in the healthcare 
setting, only a few studies have focused on the use of 
these systems with regard to the diagnosis of diabetic 
neuropathy[22].

MATERIALS AND METHODS
Objective
To design a fuzzy expert system to categorize the 
severity of diabetic neuropathy based on clinical exa-



82 February 15, 2017|Volume 8|Issue 2|WJD|www.wjgnet.com

minations and results of laboratory tests.

Setting, design, and sample size
This study was completed in 2014. The study consisted 
of two main phases. In the first phase, the parameters 
required for the diagnosis of diabetic neuropathy were 
determined on the basis of the literature review[23,24]. 
These parameters formed a questionnaire to investigate 
specialists’ views about the importance of each of them. 
In the second phase, the system was tested by using 
real data. In the first phase, eight endocrinologists 
participated in the study. Owing to the limited number 
of specialists, no sampling method was applied in this 
phase. In the second phase, 244 medical records were 
identified from a database located in an endocrinology 
and metabolism research centre. These records were 
related to those patients who visited the centre during 
the first six months of 2014 and who were primarily 
diagnosed with diabetic neuropathy.

Methods for data collection and distribution
The questionnaire was distributed among the specialists 
by one the researchers (MRK), and their views on the 
importance of the diagnostic parameters were investi-
gated. In second phase, a form was used to extract the 
required data from the medical records.

Development of the questionnaire 
As noted before, the questionnaire was designed based 
on the literature review[23,24]. It comprised two parts: 
The first part included the specialists’ demographic 
information, such as age, gender, and work experience; 
the second part was designed based on a five-point 
Likert scale (5 = very important, 4 = important, 
3 = relatively important, 2 = less important, 1 = 
unimportant) and consisted of 15 questions to identify 
the degree of importance of each diagnostic parameter. 
The face and content validity of the questionnaire was 
approved by experts in the field of endocrinology. Its 
reliability was confirmed by using the test-retest method 
(α = 0.9). 

Statistical analysis 
A data analysis was performed by using SPSS (version 
20.0) software, and parameters with a mean score of 
less than three were excluded to facilitate the process 
of writing fuzzy rules. To test the system, the sensitivity, 
specificity, and accuracy of the fuzzy expert system 
were measured and compared with the final diagnosis 
recorded in the database. Cohen’s kappa coefficient and 
the receiver operating characteristic (ROC) curve were 
used to report data.

Participants and recruitment 
Before conducting the research, the approval of an 
institutional review board was obtained. In the first 
phase, the target population comprised endocrinologists 
working in an endocrinology and metabolism research 

centre. They were contacted by one of the researchers 
(MRK) and the research facilitator (MM), and were 
invited to take part in the study. Their participation in 
the research was completely voluntary. Regarding the 
medical records, patient identities were excluded and 
only the required data was extracted so that it can be 
used in the process of evaluation. 

RESULTS
Participants
As noted before, the first part of the questionnaire 
included the participants’ demographic information. 
According to the results, most of the participants were 
men (n = 5, 62.5%) aged between 30-50 years. The 
highest frequency (n = 3, 37.5%) was related to the 
age group of 46-50 years and the specialists with more 
than 16 years of work experience. 

Diagnostic parameters for diagnosing diabetic 
neuropathy 
The second part of the questionnaire was related to the 
diagnostic parameters required for diagnosing diabetic 
neuropathy. This part included the duration of diabetes, 
the symptom assessment based on MNSI, the sign 
examination based on MNSI, and the related laboratory 
tests. Table 1 presents the specialists’ views in relation 
to the importance of the aforementioned diagnostic 
parameters.

As Table 1 shows, from the specialists’ point of 
view, the most important diagnostic parameters were 
the duration of diabetes (4.88 ± 0.35), the glycolysis 
haemoglobin level (4.50 ± 0.75), and the score of the 
sign examination based on the Michigan questionnaire 
(4.38 ± 0.51). The lowest degree of importance (2.13 
± 0.83) was related to the amount of phosphorus in 
blood. After determining the diagnostic parameters of 
diabetic neuropathy, the semantic network of the expert 
system was drawn (Figure 1).

Designing a fuzzy expert system
As can be seen in the above figure, the ultimate goal, 
namely diagnosing diabetic neuropathy, is shown in the 
centre, and the diagnostic parameters are in the leaf 
nodes. In order to design the fuzzy expert system, all 
input variables were fuzzified based on membership 
functions. The system had seven input variables: The 
duration of diabetes, the score of the symptom examina-
tion based on the Michigan questionnaire, the score 
of the sign examination based on the Michigan ques-
tionnaire, the glycolysis haemoglobin level, fasting blood 
sugar, blood creatinine, and albuminuria. The system 
also had one output variable, which was the severity 
of diabetic neuropathy. The rules of the expert system 
were written based on the semantic network, consulting 
a specialist, and giving the same weight to all rules. 
The inference engine of the system was designed by 
using the Mamdani inference method. Figure 2 provides 
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an overview of the fuzzy inference architecture of the 
system.

Finally, the graphical user interface of the expert 
system was designed by using Active Server Page. 

Network Enabled Technology (ASP.NET). It is an open-
source server-side web application framework designed 
for web development to produce dynamic web pages 
(Figure 3). The input variables, such as the duration 

  Degree of importance Unimportant (1) Less important (2) Relatively important (3) Important (4) Very important (5) Mean ± SD

  Duration of diabetes          0          0               0     1 (12.5%)    7 (87.5%) 4.88 ± 0.35
  Symptom assessment based on MNSI          0          0 1 (12.5%)     5 (62.5%) 2 (25%) 4.13 ± 0.64
  Sign examination based on MNSI          0          0 0     5 (62.5%)    3 (37.5%) 4.38 ± 0.51
  HbA1c          0          0 1 (12.5%) 2 (25%)    5 (62.5%) 4.50 ± 0.75
  CBC    1 (12.5%) 3 (37.5%)              4 (50%)       0             0 2.38 ± 0.74
  FBS          0 0              0 6 (75%) 2 (25%) 4.25 ± 046
  ESR    1 (12.5%) 3 (37.5%) 3 (37.5%)    1 (12.5%)             0 2.52 ± 092
  Oral GTT    1 (12.5%)          4 (50%) 1 (12.5%) 2 (25%)             0 2.50 ± 1.06
  Albuminuria 0 1 (12.5%) 1 (12.5%) 4 (50%) 2 (25%) 3.88 ± 0.99
  TSH 2 (25%) 1 (12.5%) 3 (37.5%) 2 (25%)             0 2.63 ± 1.18
  B12 Vitamin 2 (25%) 1 (12.5%) 1 (12.5%) 4 (50%)             0 2.88 ± 1.35
  BUN    1 (12.5%) 3 (37.5%) 3 (37.5%)    1 (12.5%)             0 2.38 ± 0.91
  BCr          0 1 (12.5%)              2 (25%)    5 (62.5%)             0 3.50 ± 0.75
  Calcium 2 (25%) 1 (12.5%)              4 (50%)    1 (12.5%)             0 2.50 ± 1.06
  Phosphorus 2 (25%) 3 (37.5%) 3 (37.5%)       0             0 2.13 ± 0.83

Table 1  The degree of importance of the diagnostic parameters for diagnosing diabetic neuropathy from the specialists’ perspectives

BCr: Blood Creatinine; BUN: Blood urea nitrogen; TSH: Thyroid-stimulating hormone; GTT: Glucose tolerance test; ESR: Erythrocyte sedimentation rate; 
MNSI: Michigan Neuropathy Screening Instrument; HbA1c: Hemoglobin A1c; CBC: Complete blood count; FBS: Fasting blood sugar.
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Figure 1  The semantic network of the expert system. MNSI: Michigan Neuropathy Screening Instrument.
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of diabetes, the results of laboratory tests, and scores 
obtained from the Michigan questionnaire, could be 
entered into the system manually either in the textual 
or in the numerical format based on the user’s choice. 
The output variable, namely the severity of the disease, 
which was shown as a number between zero and 10, 

had been divided into four categories: absence of the 
disease, (the degree of severity) mild, moderate, and 
severe. Figure 4 shows the risk of diabetic neuropathy 
based on the scores obtained from the Michigan question-
naire.

According to Figure 4, by increasing the scores 

Duration-of-diabete (2)

History-MNSI (3)

Physical-examination-MNSI (3)

Glycosylated-hemoglobin-A1c (3)

Fasting-blood-sugar (3)

Urine-albumin (2)

Creatinine (2)

Degree of DN-editRule9

(mamdani)

76 rules Degree-of-diabetic-neuropathy (4)

System degree of DN-EditRule9: 7 inputs, 1 outputs, 76 rules

Figure 2  An overview of the fuzzy inference architecture of the system.

Figure 3  The graphical user interface of the fuzzy expert system.
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obtained from the Michigan questionnaire, the severity 
of diabetic neuropathy will increase accordingly.

System function evaluation
The system was tested by using real data. In total, the 
records of 244 patients with diabetic neuropathy were 
identified. However, 31 records were excluded due 
to the incompleteness of clinical data. The remaining 
records (n = 213) included 118 patients who were 
diagnosed with diabetic neuropathy, while diagnosis 
was ruled out for the rest (n = 95). The system function 
was tested in terms of sensitivity (true positive rate), 
specificity (true negative rate), and accuracy (proportion 
of the true results, both positive and negative), which 
were 89%, 98%, and 93%, respectively.

Finally, the system’s output was compared with the 
final diagnoses made by the specialists and recorded in 
the patients’ records. These diagnoses were made by 
using the nerve conduction velocity test, the vibration 
perception threshold, the monofilament test, and the 
clinical neuropathy examination. The comparison was 
conducted by using the Kappa coefficient and the K 
value was 0.6. According to Landis and Koch, a Kappa 
value between 0.4 and 0.75 shows a fair to good agree-
ment[25]. Therefore, the system designed in this study 
showed a fair to good level of similarity between the 
system’s function and the specialists’ diagnoses. The 
ROC curve presents the results of testing the system 
(Figure 5).

As can be seen in the above figure, the ROC curve 
is ideal. It is close to the high point of the square that 

represents an appropriate function of the system.

DISCUSSION
As mentioned before, one of the most common long-
term complications of diabetes mellitus is diabetic 
neuropathy. In order to control this complication, it is 
important to diagnose it both accurately and timely[10]. 
Although there are a variety of methods to detect the 
disease, it is difficult to diagnose it at the very early 
stage[13]. Therefore, the use of IT applications, such as 
fuzzy expert systems, is suggested.

In the present study, seven diagnostic parameters-
the duration of diabetes, the symptom assessment, 
the sign examination based on the MNSI, the glycolysis 
haemoglobin level, fasting blood sugar, blood creatinine, 
and albuminuria-were considered as input variables, and 
the severity of diabetic neuropathy was considered as 
an output variable. These variables were selected based 
on the specialists’ perspectives and the literature review. 
Similarly, the knowledge and experience of four experts 
in the field of diabetic neuropathy was investigated in 
the study conducted by Picon et al[22] to determine the 
diagnostic parameters and to design a knowledge-based 
system. In their research, four inputs variables included 
symptom, the sign assessment based on the Michigan 
questionnaire, the glycolysis haemoglobin level, and the 
duration of diabetes. The output of the system classified 
the severity of diabetic neuropathy in three categories: 
Mild, moderate, and severe. In contrast with the study 
of Picon et al[22] the number of input variables increased 
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in the current research and laboratory test results were 
included to improve the accuracy of diagnosis. Similarly, 
Neshat et al[26]’s study considered six input variables 
and one output variable to diagnose liver disorders. To 
diagnose heart ailments, Adeli et al[27] used 12 input 
variables and considered the diagnosis of heart diseases 
as the output variable.

In the present study, values between zero and 10 
were considered for the output variable, which was 
the severity of diabetic neuropathy. An increase in the 
value of output variable showed the level of severity for 
diabetic neuropathy. 

In the current study, the fuzzy sets and membership 
functions for each of the seven input variables and 
the output variable were finalized after consulting a 
specialist. This approach can help eliminate the rules 
that could be covered by other rules, and finally, 76 rules 
were used to design the system. Similarly, DoostHoseini 
et al[28] consulted doctors to reduce the number of rules 
to an appropriate number. In another study, Zolnoori 
et al[29] developed a fuzzy expert system for diagnosing 
asthma. Given that the patients’ records were incom-
plete, an indirect approach was used to develop the 
system’s knowledge base. In this approach, the resear-
chers reviewed books and scientific papers, and also 
conducted structured and unstructured interviews with 
doctors and patients. Having analysed the data, the 
most important variables useful for diagnosing asthma 
were identified.

In the present study, the system interface was 
designed by using ASP.NET rather than matrix labora-
tory (MATLAB). In fact, web-based applications have 
more flexibility and can be used by multiple users 
at the same time. Ease of use is another feature of 
these systems, which, in turn, can increase the work 
efficiency. 

In this study, the output of the system was divided 
into four categories: The absence of the disease, 

mild, moderate, and severe. In contrast, Picon et 
al[22] classified the severity of neuropathy into three 
categories: Mild, moderate, and severe. Moreover, 
the specificity and sensitivity of the system were 
not reported in their study. In the current study, the 
specificity of the system was 98%, which shows a high 
level of system performance. Also, there was a relatively 
good agreement between the system’s function and the 
diagnoses recorded by the specialists. Although other 
methods of diagnosis were not considered in the current 
study, the specificity and sensitivity of the system highly 
suggested that such a system could help physicians to 
diagnose the disease more quickly by using parameters 
like results of laboratory tests.

In the current study, the main aim was to develop 
an expert system for diagnosing diabetic neuropathy. 
Therefore, the clinical effectiveness of the system was 
not evaluated due to resource restrictions. Conducting 
evaluation studies after implementing the system in 
the actual healthcare setting would help determine the 
impact of the system on the health status of patients. 

In conclusion, an expert system was designed for 
diagnosing diabetic neuropathy in this study. As dia-
betic neuropathy is a chronic disease that may have 
serious consequences, early diagnosis of the disease 
is important to control it. The system designed in the 
current study could help specialists to diagnose the 
disease more quickly by using the most common dia-
gnostic parameters. General practitioners can use 
such a system in remote areas to improve the quality 
of care for patients with diabetes. With it, the disease 
can be diagnosed more easily and quickly. There is no 
need to undertake complex procedures, and the care 
plan can be applied at the right time. Further research 
is suggested to increase the number of variables to 
improve the accuracy, sensitivity, and specificity of the 
system. Moreover, the feasibility of using this method in 
daily clinical practice and its impact on the efficiency and 
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Figure 5  The receiver operating characteristic curve.
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cost-effectiveness compared to those of other methods 
need to be investigated in future studies.

COMMENTS
Background 
One of the major problems associated with the diagnosis of diabetic neuropathy 
is the lack of reliable clinical scale for grading the severity of the disease. A 
variety of methods, such as the nerve conduction velocity test, the vibration 
perception threshold, and the monofilament test, are used to detect the 
peripheral neuropathy. In addition to clinical examination, laboratory tests and 
risk factors of the disease such as age, sex, renal disease, and smoking need to 
be considered. 

Research frontiers
Since the disease usually develops on a continuous basis, two-valued logic 
cannot be used to express this continuity any more. Therefore, new methods 
for diagnosing the disease have been considered. Among these methods, the 
development of information technology applications, decision support systems, 
and fuzzy expert systems have received special attention.

Innovations and breakthroughs
In order to diagnose diabetic neuropathy, clinical examinations as well as results 
of laboratory tests like the haemoglobin A1c level, fasting blood sugar, and 
the oral glucose tolerance test should be considered. In this study, information 
technology was used to design a fuzzy expert system to diagnose the severity of 
diabetic neuropathy based on clinical examinations and laboratory tests. 

Applications 
The system designed in the current study can help specialists to diagnose the 
disease more quickly by using the most common diagnostic parameters. General 
practitioners, too, can use it in remote areas to improve the quality of care for 
patients with diabetes. With it, the disease can be diagnosed more easily and 
quickly. There is no need to undertake complex procedures, and the care plan 
can be applied at the right time.

Terminology
The fuzzy expert system is a new version of expert systems that uses fuzzy 
logic for data processing. A fuzzy expert system is used to describe uncertain 
phenomena because the real-world phenomena are much more complex than 
an exact and absolute description. The most common complication of diabetes 
is impairment of the peripheral neural system, which is known as diabetic 
neuropathy. 

Peer-review
This is interesting and important paper for diagnosis of diabetic complications. 
The paper is well-written and focused.
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