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Abstract
The applicability of stable gut hormones for the treatment 
of obesity-related diabetes is now undisputable. This is 
based predominantly on prominent and sustained glucose-
lowering actions, plus evidence that these peptides can 
augment insulin secretion and pancreatic islet function 
over time. This review highlights the therapeutic potential 
of glucagon-like peptide-1 (GLP-1), glucose-dependent 
insulinotropic polypeptide (GIP), oxyntomodulin (OXM) 
and cholecystokinin (CCK) for obesity-related diabetes. 

Stable GLP-1 mimetics have already been successfully 
adopted into the diabetic clinic, whereas GIP, CCK and 
OXM molecules offer promise as potential new classes of 
antidiabetic drugs. Moreover, recent studies have shown 
improved therapeutic effects following simultaneous 
modulation of multiple receptor signalling pathways by 
combination therapy or use of dual/triple agonist peptides. 
However, timing and composition of injections may be 
important to permit interludes of beta-cell rest. The review 
also addresses the possible perils of incretin based drugs 
for treatment of prediabetes. Finally, the unanticipated 
utility of stable gut peptides as effective treatments for 
complications of diabetes, bone disorders, cognitive 
impairment and cardiovascular dysfunction is considered. 

Key words: Diabetes; Obesity; Incretin; Prediabetes; 
Gut hormones

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Stable gut hormones have well defined thera
peutic actions for type 2 diabetes mellitus. In addition, 
simultaneous modulation of gut hormone receptors could 
increase therapeutic efficacy, but timing and receptor 
activation profile may be important. Finally, gut-derived 
peptides could possess benefits for bone disorders, 
cognitive impairment and cardiovascular dysfunction.

Irwin N, Flatt PR. New perspectives on exploitation of incretin 
peptides for the treatment of diabetes and related disorders. World 
J Diabetes 2015; 6(15): 1285-1295  Available from: URL: http://
www.wjgnet.com/1948-9358/full/v6/i15/1285.htm  DOI: http://
dx.doi.org/10.4239/wjd.v6.i15.1285

INTRODUCTION
The human gastrointestinal tract (GIT) comprises the 
stomach, as well as the small (duodenum, jejunum 
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and ileum) and large (caecum, colon and rectum) 
intestines. Aside from nutrient digestion, absorption 
and assimilation, the GIT also has significant endocrine 
functions[1]. To date, the most important endocrine 
function of the gut relates to evidence that intestinal 
derived peptides are fundamentally involved in post­
prandial insulin release[2]. This action is termed the 
“incretin effect”, and relates to the direct beta-cell 
insulin secretory effect of two hormones, namely 
glucagon-like peptide-1 (GLP-1) and glucose-dependent 
insulinotropic polypeptide (GIP) that are secreted from 
L- and K-cells, respectively (Figure 1)[3]. A number of 
other enteric peptide hormones released in response 
to feeding also have a role in energy regulation and 
possibly insulin secretion, including cholecystokinin 
(CCK) and oxyntomodulin (OXM) (Figure 1)[4,5]. However, 
only GLP-1 and GIP fulfil the criteria of a true incretin 
hormone that stimulates glucose-induced insulin 
secretion at physiological circulating concentrations[3]. 
Despite the obvious potential of incretin and incretin-
like peptides for the treatment of conditions such as 
diabetes and obesity, the extremely short biological 
half-life of these peptides, due to efficient enzymatic 
degradation and subsequent renal filtration, severely 
limits therapeutic applicability[4,5]. However, interest 
in gut peptides has increased in recent years with 
knowledge that modified versions of these compounds, 
with vastly improved pharmacokinetic properties, have 
sustained beneficial physiological effects[6].

GLP-1
The biological actions of GLP-1 are largely preserved 
in type 2 diabetes and pharmacological doses of the 
peptide evoke robust insulin-releasing and antihy­
perglycaemic effects[7]. GLP-1 exerts its beta-cell effects 
through interaction with specific surface receptors that 
activate signal transduction pathways including the 
stimulation of intracellular cAMP mediated events[8]. 
GLP-1 also promotes beta-cell proliferation and islet cell 
neogenesis as well as inhibiting beta-cell apoptosis and 
alpha-cell glucagon secretion[8]. Notably, both GLP-1 
and GIP expression and secretion has been described 
in islet alpha cells[9,10]. Indeed, it is feasible that intra-
islet, rather than gut derived, GLP-1 and GIP make 
a significant contribution to these direct beneficial 
islet effects[11-13]. However, it should be noted that 
positive direct islets effects are still noted in rodents 
following prolonged exogenous delivery of stable GLP-1 
mimetics[8]. 

GLP-1 not only targets pancreatic islet cells, but 
imparts positive actions in terms of inhibition of 
gastric emptying, suppression of appetite and weight 
loss[8]. Given this advantageous biological action 
profile, there are now several GLP-1 related enzyme-
resistant, long-acting analogues available for clinical 
use in diabetes (Table 1), ranging from regimens that 
require twice daily injection to those that necessitate 
only once weekly administration[14]. Development of 

new GLP-1 mimetics, such as those conjugated to an 
antithrombin Ⅲ-binding pentasaccharide, are also in 
the pipeline[15]. Interestingly, a recent commentary 
highlights that differences in the structure and phar­
macokinetics of currently available GLP-1 mimetics 
could significantly alter immunogenicity, CNS signalling 
and overall therapeutic effect[16]. Thus, physicians may need 
to re-evaluate the most appropriate GLP-1 treatment 
strategy for each patient. Encouragingly however, GLP-
1-R agonists demonstrate an efficacy approaching that 
of insulin treatment, but unlike insulin have the added 
benefits of promoting weight loss with minimal risk of 
hypoglycaemia[17]. 

Despite the widespread use of GLP-1 mimetics (Table 
1), there have been recent safety concerns regarding 
the ability of sustained GLP-1-R activation to cause 
pancreatitis, pancreatic and thyroid cancer, as well as 
glucagon-producing neuroendocrine tumours in man[18,19]. 
As such, it is well recognised that pancreatitis is a risk 
factor for pancreatic cancer[20]. However, a recent meta-
analysis did not support increased risk of pancreatitis or 
cancer associated with GLP-1 therapy[21]. Indeed, issues 
with poorly matched patient groups treated with incretin-
based vs non-incretin-based medications and problems 
with specifically identifying glucagon-producing cells also 
calls into question the validity of these safety concerns[22]. 
Thyroid cancer fears appear to stem largely from 
rodent studies[23], and reduced expression of the GLP-1 
receptors in human, as opposed to rodent, thyroid cells 
is the likely explanation for this[24]. The most frequently 
reported side effect of GLP-1 therapy is dose-dependent 
and transient mild to moderate nausea, vomiting and 
diarrhoea[16]. Thus, taken together the safety profile of 
GLP-1 based therapeutics is largely reassuring. However, 
pharmacovigilance with GLP-1 drugs is still required, 
especially in relation to patients with a history, or 
increased risk, of pancreatitis or thyroid cancer. 

GLUCOSE-DEPENDENT INSULINOTROPIC 
POLYPEPTIDE
Although initially thought to play a role in impeding 
histamine induced gastric acid secretion[25], the 
primary physiological role of GIP is now considered 
to be stimulation of postprandial insulin secretion[13], 
The insulinotropic action of GIP, mediated by specific 
receptors on the surface of pancreatic beta-cells, is 
initiated largely by intracellular cAMP generation (Figure 
1) and subsequent Ca2+ ion influx leading to insulin 
granule exocytosis[13]. An additional beneficial action of 
GIP involves enhanced survival of beta-cells, which is 
also mediated through cAMP dependent cell signaling 
pathways[26,27]. GIP also acts as beta-cell growth 
factor by stimulating mitogen-activated protein kinase  
pathways[28] and modulating KATP channel expression[29]. 
Given this impressive bioactive profile at the level of 
the beta-cell, there has been significant interest in the 
potential for GIP-based pharmaceuticals as antidiabetic 
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drugs. However, like GLP-1 the pharmacokinetic profile 
GIP is severely hindered due to rapid plasma degradation 
by the ubiquitous enzyme dipeptidyl peptidase 4 (DPP-4), 
and clearance cleared from the body by efficient renal 
filtration[30]. In addition to this, the biological effects of 
GIP appear to be markedly reduced in patients with type 
2 diabetes when compared to normal individuals[7].

The first of these barriers has been conquered, as 
with GLP-1 mimetics, through generation of N-terminally 
modified enzyme-resistant, long-acting GIP molecules, 
and these molecules has been reviewed extensively 
elsewhere[31,32]. However, the issue of reduced GIP 
responsiveness in type 2 diabetes still remains, and 
is thought to be linked to GIP receptor (GIP-R) down-
regulation or desensitisation[7]. However, it is highly likely 
that that GIP desensitisation is a pathophysiological 
consequence as opposed to an aetiological factor of 
type 2 diabetes. In keeping with this, studies correcting 
hyperglycaemia using insulin or sulphonylureas indicate 
that GIP sensitivity can be restored[33,34]. It has also been 
demonstrated that a K-cell derived peptide co-secreted 
from the intestine with GIP, xenin-25, can potentiate 
the insulinotropic action of GIP[35,36]. As such, a novel 
long-acting palmitate-derivatised analogue of xenin-25 
was shown to significantly augment GIP action in vitro 
and in vivo[37]. Moreover, sustained administration 
of this acylated xenin peptide exerted a spectrum of 
beneficial metabolic effects in high-fat-fed mice[38]. This 
presumably relates to restoration of GIP action in these 
diabetic mice[38]. In harmony with this, a recent study 
indicates that the impaired insulinotropic response to 
GIP under diabetic milieu involves mechanisms beyond 
simple expression of the GIP-R[39], further highlighting a 
potential role for xenin. Therefore, there still appears to 
be significant, as yet untapped, therapeutic potential for 
GIP-based compounds, especially in combination with 
molecules that can enhance GIP sensitivity directly or 
counter hyperglycaemia through other actions. 

OXYNTOMODULIN
Similar to GLP-1, OXM is an L-cell derived proglucagon 
gene product secreted in response to feeding[40]. To date 
a specific OXM receptor has not been described, and 
the biological actions of OXM are attributed to binding 
and activation of GLP-1 and glucagon receptors (Figure 
1), albeit with reduced potency compared to the native 
ligands[41]. In vitro and in vivo rodent studies suggest 
that through glucagon receptor agonism, OXM induces 
catabolic effects that favour weight loss and subsequent 
improved metabolic control, while glucose homeostasis 
and insulin resistance are improved through activation of 
GLP-1 receptors[5]. Promisingly, data from small clinical 
studies implies that beneficial effects on energy intake 
and weight loss also occur in humans[42,43]. However, as 
is this case for the incretin hormones, the therapeutic 
potential of OXM-based molecules is hindered by 
rapid cleavage of the first two N-terminal amino acids 
of OXM by DPP-4 in plasma, rendering the peptide 
inactive[44]. Nonetheless, structure-function studies 
show that N-terminal modification can protect against 
DPP-4 degradation without disproportionately affecting 
bioactivity of the molecule[44,45]. Indeed, a recent study of 
six novel OXM analogues has revealed that Oxm-based 
peptides with specific N-terminal position 2 modifications 
are stable and show particular promise for the treatment 
of diabetes[46]. These data suggest that further exploration 
of dual agonism of the GLP-1 and glucagon receptor 
is required for human diabetes. It is notable that co-
administration of GLP-1 and glucagon in humans can 
replicate the beneficial actions of OXM[47], although this 
approach may be more cumbersome in clinical practice. 

CHOLECYSTOKININ
CCK is an intestinal I-cell derived gut hormone secreted in 
response to meal ingestion[48]. CCK binds to specific CCK1 
receptors present on gastric mucosa and vagal afferent 
neurons which collectively leads to gallbladder secretions, 
release of pancreatic digestive juices, satiety and slowing 
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Figure 1  Schematic depicting the major signalling pathways involved in 
glucose-dependent insulinotropic polypeptide, glucagon-like peptide-1, 
glucagon and cholecystokinin induced insulin secretion from pancreatic 
beta-cells. AC: Adenylyl cyclase; cAMP: Adenosine 3'-5'-cyclic monophosphate; 
DAG: Diacyl-glycerol; IP3: Inositol 1,4,5-trisphosphate; PKA: Protein kinase A; 
PLC: Phospholipase C; CCK: Cholecystokinin.

Table 1  Incretin-based drugs currently approved by the 
European Medicines Agency

Drug name Primary mechanism of action EMA approval date

Exenatide GLP-1 receptor agonist Nov-06
Sitagliptin DPP-4 inhibitor Mar-07
Vildagliptin DPP-4 inhibitor Sep-07
Liraglutide GLP-1 receptor agonist Jun-09
Saxagliptin DPP-4 inhibitor Oct-09
Exenatide-LAR GLP-1 receptor agonist Jun-11
Linagliptin DPP-4 inhibitor Aug-11
Lixisenatide GLP-1 receptor agonist Feb-13
Alogliptin DPP-4 inhibitor Sep-13
Dulaglutide  GLP-1 receptor agonist Jan-15

DPP-4: Dipeptidyl peptidase 4; GLP-1: Glucagon-like peptide-1; LAR: Long-
acting release; EMA: European medicines agency.



of gut motility[1]. CCK2 receptors are mainly confined to 
the gastrointestinal tract and brain and may have a role 
in regulating anxiety and locomotion[49]. Importantly, 
CCK has also been shown to stimulate insulin secretion 
in rodents and man (Figure 1)[50,51], and act as a growth 
and anti-apoptotic factor for pancreatic beta-cells[52]. 
Thus, CCK agonists could have noteworthy potential 
for diabetes therapy, since their biological action profile 
is similar to the incretin hormones. However, native 
CCK is rapidly degraded by serum aminopeptidases 
upon secretion into the bloodstream[53], which hinders 
therapeutic potential. However, early studies have 
clearly shown that both N-terminal modification through 
glycation, or PEGylation, can prevent enzymatic 
degradation of CCK and extend biological action and 
therapeutic potential[53,54]. Following on from this, a more 
recently developed enzymatically stable, N-terminally 
modified, CCK analogue, namely (pGlu-Gln)-CCK-8, has 
been shown to have an improved pharmacodynamic 
profile, and to both alleviate and protect against 
obesity-related diabetes in animal models[51,55], with an 
encouraging safety profile[56]. The mechanism of action of 
(pGlu-Gln)-CCK-8 likely revolves around prominent and 
sustained reductions of energy intake, possibly related to 
modulation of central neuropeptide Y and melanocortin 
related pathways, and enhanced insulin release[57]. 
Encouragingly, a PEGylated version of (pGlu-Gln)-CCK-8 
has now been fully characterised, that would be resistant 
to kidney filtration, and suitable for possible once daily 
dosing in man[58]. Further investigations relating to 
translation of beneficial effects to human type 2 diabetes 
together with safety evaluation are still required, but 
initial observations with specific and stable CCK1 receptor 
agonists are encouraging. 

MULTI-TARGET HYBRID PEPTIDE 
THERAPIES FOR DIABETES 
Given the beneficial effects of OXM-based peptides, 
it follows that design of hybrid peptides capable of 
modulating more than one receptor pathway could 
have distinct therapeutic benefits for the treatment of 
obesity-related diabetes. By utilising the correct ratio 
of receptor pathway interactions, efficacy should be 
enhanced with the potential for administration of lower 
doses, thereby reducing, or removing, adverse side 
effects. The most logical starting point for design of a 
synthetic dual acting hybrid peptide would inevitably 
involve a modified incretin hormones capable of activating 
both GIP and GLP-1 receptors. As such, GIP/GLP-1 
chimeric peptides were characterised almost 20 years 
ago, and the structural requirements for specific 
ligand-receptor interactions well defined[59]. Combined 
administration of individual long-acting GIP and GLP-1 
mimetics has been considered in preclinical studies, 
with some success[60]. However, issues of separate drug 
formulation and dosing still remain, although these 
may not be insurmountable as indicated by recent 

introduction of IDegLira for combined insulin and GLP-1 
therapy in type 1 diabetes[61]. In terms of a single hybrid 
peptide that can directly activate both GIP and GLP-1 
receptors, only MAR701, Marcadia Biotech (now Roche) 
has progressed to the evaluation of beneficial effects 
in man. However, since the clinical benefits of DPP-4 
inhibitors clearly involves increased circulating levels of 
both incretin peptides[62], concomitant activation of GIP 
and GLP-1 receptors does appear to have promise for 
the treatment of type 2 diabetes (Table 1).

Further studies have investigated the effects of GLP-1 
receptor agonism combined with either glucagon receptor 
agonism or antagonism[63,64]. Although somewhat contra­
dictory in nature, these contrasting regimens both 
utilise the beneficial glucose-lowering effects of GLP-1, 
combined with either inhibition of glucagon-mediated 
gluconeogenesis and glycogenolysis[65], or activation 
of glucagon pathways involved in energy turnover and 
weight loss[64], as is this case for OXM. Other modified 
hybrid peptides for dual activation of regulatory peptide 
receptors include, ZP3022, a combined GLP-1-gastrin 
agonist[66]. Through activation of GLP-1 and CCK2 
receptors, this peptide improved glycaemic control 
in db/db mice via enhancement of beta-cell mass[66]. 
However, perhaps more appealing is the potential for 
combined and sustained activation of GLP-1 and CCK1 
receptors. As such, two independent studies have clearly 
shown pronounced synergistic metabolic benefits with 
combined administration of long-acting GLP-1 and CCK1 
receptor agonists in rodent models of type 2 diabetes[67,68]. 
These extremely positive effects are believed to occur 
through activation of complementary pathways that 
lead to significant weight loss and dramatically improved 
metabolic control[67,68]. Furthermore, a novel CCK/GLP-1 
hybrid peptide, based on the chemical structures of 
(pGlu-Gln)-CCK-8 and exenatide, has recently been 
described and shown to have significant therapeutic 
potential in high-fat fed mice[69]. This molecule clearly 
warrants further study as a potential new treatment 
option for type 2 diabetes. 

Considering the evident therapeutic efficacy offered 
by dual peptide receptor interactions, single compounds 
with the ability to concurrently activate three or more 
regulatory peptide receptors could deliver even greater 
beneficial effects. Moreover, the celebrated success 
of bariatric surgery for restoring metabolic control in 
type 2 diabetic patients, independent of weight loss[70], 
results from a culmination of reduced energy intake 
and modulation of the secretion and biological action of 
numerous gut-derived peptides[71]. Thus, there is now 
significant enthusiasm arising from designer modified 
peptides with the ability to concurrently modulate GIP, 
GLP-1 and glucagon receptor signalling[72,73]. These triple-
acting peptides have resulted in dramatic improvements 
in glucose homeostasis and overall metabolic control in 
high fat fed mice[72,73]. Despite their obvious potential, 
issues regarding the ratio of GIP, GLP-1 and glucagon 
receptor activation still need to be addressed, As such, 
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a subsequent study has reported the distinct beneficial 
effects of a balanced glucagon, GLP-1 and GIP receptor 
tri-agonist to correct obesity and diabetes in high fat fed 
mice[74]. Taken together, there is a clear and attractive 
rationale for further testing of combinatorial hormone 
therapies for the treatment of obesity and diabetes in 
humans.

Although the future trend for peptide-based anti­
diabetic drugs seems to be development dual or triple 
agonists, treatment modalities that incorporate periods 
of beta-cell rest could be important for glycaemic 
control[75]. Thus, antidiabetic drugs that induce direct 
beta-cell stimulatory effects can erode beta-cell mass 
over time[76]. As such, intermittent periods of beta-
cell rest may be useful to preserve long-term beta-cell 
function and lasting glycaemic control[75]. In contrast to 
sulphonylureas and meglitinides, incretin based drugs 
stimulate insulin secretion in a glucose-dependent 
fashion that should help preserve beta-cell mass and 
function[8]. Nonetheless, adequate periods of rest 
might still allow chronically stimulated pancreatic beta-
cells to replenish both cell surface receptors and the 
immediately secretable insulin granule pool[77]. Such 
effects, together with the positive actions of incretins 
on beta-cell stimulus-secretion coupling, survival and 
growth, could be highly beneficial. Accordingly, the timing 
of injections of dual or triple acting therapies, as well 
as the profile of receptor pathways activated, could 
be of valuable clinical relevance. In relation to this, 
inhibition of GIP-R signalling has been shown to improve 
metabolic control and glycaemic status in animal models 
of obesity-related diabetes by enhancing insulin action 
and diminishing insulin secretion[78,79]. Thus a key aspect 
underlying the beneficial effects could be related to the 
induction of pancreatic beta-cell rest. Consistent with 
this, combination of morning injection of liraglutide, with 
stable GIP antagonist peptide in the evening, greatly 
improved glycaemic control in db/db mice compared 
with reciprocal administration or twice daily injection 
of liraglutide[80]. Further investigation of this potentially 
important treatment paradigm, in combination with other 
agents that stimulate and/or relieve beta cell insulin 
release, is required to fully explore therapeutic relevance 
and applicability.  

INCRETIN THERAPIES AND PREDIABETES 
Prediabetes describes to a situation where blood sugar 
is high, but not elevated sufficiently to classify as overt 
type 2 diabetes. However, the condition represents a 
high risk state for future development of diabetes, most 
likely linked to progressive beta-cell decline[81]. Thus, it 
follows that the positive effects of incretin mimetics on 
beta-cell function, including possible benefits for beta-
cell proliferation and survival, plus additional weight-
lowering and extrapancreatic actions[8], could hold 
significant promise for prediabetic patients. Moreover, 
patients with prediabetes have been shown to have 

an impaired incretin effect in response to oral nutrient 
delivery[82]. 

To date, there have been several tentative clinical 
studies conducted on the potential beneficial effects 
of incretin-based drugs for prediabetes. Studies with 
DPP-4 inhibitors (Table 1), which prevent incretin peptide 
degradation and increase active circulating levels of 
GIP and GLP-1, reported modest positive effects[83-85]. 
However, treatment with the stable incretin mimetics, 
exenatide or liraglutide, generated more positive 
outcomes[86,87]. This included significant reductions in 
the prevalence of prediabetes with reversion to normal 
glucose tolerance[86,87]. The inconsistency between DPP-4 
inhibitors and GLP-1 mimetics most likely relates to 
differences in the circulating levels of active hormones 
achieved. However, issues of oral vs injectable delivery of 
DPP-4 inhibitors and GLP-1 mimetics, respectively, could 
significantly affect compliance in this patient subgroup. 
In addition, the potential adverse side-effect profile of 
incretin based therapies, as discussed above, would also 
have to be fully considered. Finally, the cost of therapy 
with DPP-4 inhibitors and particularly GLP-1 mimetics 
is greater when compared to other glucose-lowering 
agents[88]. Thus, given the limited experience to date 
regarding the effect of incretin therapies in prediabetes, 
future clinical trials would be recommended. In terms 
of GIP, CCK and OXM therapies, clinical effectiveness 
in type 2 diabetes would need to be fully established 
before beneficial actions in prediabetic patients could be 
considered.

UNEXPECTED THERAPEUTIC POTENTIAL 
OF INCRETIN BASED DRUGS 
Bone
Although incretin hormones have been studied exten­
sively for therapeutic effectiveness in diabetes, research 
has uncovered unexpected benefits in various other 
tissues. For instance, a role for gastrointestinal derived 
hormones in bone remodeling is suspected since serum 
levels of bone biomarkers rapidly alter after a meal[89]. 
Indeed, functional GIP receptors have been evidenced 
on the surface of bone cells[90]. Notably, GIP has been 
shown to inhibit bone resorption in humans under both 
euglycaemic and hyperglycaemic states[91]. Thus, the 
beneficial effects of GIP on bone could be independent 
of feeding state. Indeed, exogenous prolonged admini­
stration of an N-terminally modified stable GIP receptor 
agonist imparted various beneficial effects on tissue-
level bone material properties of rats[92]. In terms of 
GLP-1 effects on bone, the picture is less clear. This 
mostly relates to data from animal models being 
clouded by the fact that GLP-1 receptors are highly 
expressed on rodent thyroid cells, resulting alterations 
of circulating calcitonin levels[93]. Nonetheless, GLP-1 
receptors have been found on the surface of human 
osteoblast-like cells[94]. Moreover, very recent data 
suggest that liraglutide has anabolic effects on bone 
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in diabetic rats[95]. In keeping with this, a study in 
double incretin receptor knockout mice[89], reported a 
combination of detrimental bone abnormalities that 
mimicked observations from both GIP[96,97] and GLP-1[98] 
receptor knockout mice. Despite these observations 
in rodents, a preliminary meta-analysis suggests that 
GLP-1 mimetics do not modify the increased bone 
fracture risk in humans with type 2 diabetes[99], or 
could even potentially increase fracture risk in this 
population[100]. In keeping with this, a retrospective 
population based cohort study has suggested that DPP- 
4 inhibition is not associated with reduced fracture risk 
in humans[101], whereas bone loss and strength where 
significantly improved by sitaglitpin therapy in diabetic 
rats[102]. Care is required therefore when extrapolating 
data on the effects of incretin-like drugs on bone 
from rodents to man, particularly in the case of GLP-1. 
However, actions of GIP are particularly promising and 
further research is required to determine if incretin 
hormones can be useful to treat abnormalities of bone 
encountered in diabetes and osteoporosis.   

Brain
In terms of the central nervous system, expression 
of functional GIP and GLP-1 receptors has been 
demonstrated in several brain regions[103]. Much of the 
therapeutic interest for incretin-like molecules in the CNS 
revolves around neuroprotective effects for the treatment 
of Alzheimer’s and Parkinson’s diseases, as well as 
cognitive impairments in diabetes[3,104]. Accordingly, 
GIP receptor knockout mice exhibit impaired memory 
learning, synaptic plasticity, and neurogenesis[105]. In 
agreement, transgenic mice that over-express GIP 
exhibit enhanced sensorimotor coordination and memory 
recognition[106]. Earlier studies have already shown that 
stable forms of GIP can beneficially modulate synaptic 
transmission and enhance the induction of long-
term potentiation, an important physiological cellular 
means of monitoring learning processes[107]. In addition, 
prolonged GIP receptor activation improved cognitive 
function, hippocampal synaptic plasticity and glucose 
homeostasis in obese-diabetic high-fat fed mice[108]. 
In agreement with this, GLP-1 receptor knockout mice 
display an impairment of synaptic plasticity and memory 
formation[109]. Furthermore, sustained treatment with 
long-acting GLP-1 agonists improves memory and learning 
in various rodent models of neurodegeneration and 
diabetes[108,110,111]. Moreover, liraglutide treatment has 
recently been shown to restore cerebral and systemic 
microvascular architecture in a rodent model of gen­
etically-induced cognitive dysfunction[112]. Based on the 
positive neuroprotective effects of incretin compounds, 
there are several ongoing clinical trials with these drugs 
that should reveal encouraging effects for the potential 
treatment of Alzheimer’s and Parkinson’s diseases[104]. 
Finally, in harmony with the positive effects of incretin 
molecules on brain function, sitaglitpin treatment was 
recently shown to improve recognition memory, oxidative 

stress and hippocampal neurogenesis in diabetic mice[113]. 
Collectively, these observations strengthen the possibility 
that incretin peptides play a direct role in modulating 
aspects of brain function and could possess key clinical 
pharmacological benefits for patients with diabetes and 
neurodegenerative disorders.

Heart and vasculature
The GLP-1 receptor has been demonstrated in the heart[114]. 
Although some controversy still exists as to the exact 
location of the receptor within the heart, various studies 
confirm the presence of GLP-1 receptor mRNA transcripts 
in rodent and human cardiac tissue[115]. In cardiomyocytes 
GLP-1 receptor signalling induced elevations in cAMP 
levels, but surprisingly this was not coupled to an increase 
in intracellular Ca2+ concentrations and cardiomyocyte 
contractility[116]. Indeed, there could be a paradoxical 
reduction in cardiomyocyte contractility despite elevated 
cAMP levels[116]. Moreover, GLP-1 receptor knockout 
mice present with decreased ventricular contractile 
function[117]. As such, the exact mechanism of action and 
physiological relevance of GLP-1 receptor signalling in the 
heart requires further detailed investigation. Despite this, 
and similar to the situation in pancreatic beta-cells, GLP-1 
appears to have anti-apoptotic effects in cardiomyocytes 
and improves overall outcomes in mice after myocardial 
infarction[118]. Further to this, GLP-1 receptor protein has 
also been detected in human coronary artery endothelial 
cells and encouragingly, activation is believed to improve 
endothelial cell function in diabetic patients[119]. Thus, 
prospective clinical trials are ongoing to assess the 
cardiovascular safety profile of GLP-1 based peptides, 
and initial observations in humans with diabetes are 
positive[120]. Whilst the GIP receptor is believed to be 
present in the heart and on vasculature[103], there is 
a paucity of knowledge in relation to GIP effects on 
these tissues. Stimulation of GIP receptors may induce 
conflicting effects in different vascular beds[121], and this 
could explain for its unaccounted physiological effects 
in these tissues. In keeping with this, the overall effect 
of DPP-4 inhibition on cardiovascular function is still not 
clear[122]. 

FUTURE DIRECTIONS
Stable gut hormones have considerable potential for 
the treatment of obesity-related diabetes, and possibly 
other related pathologies. Whilst disorders of bone, 
cognitive function and the cardiovascular system can be 
considered as complications of diabetes, they are also 
standalone distinct illnesses in their own right. Thus, the 
therapeutic outlook of incretin mimetics may stretch well 
beyond diabetes. However, to date only GLP-1 based 
drugs are clinically available, exclusively for the treatment 
of type 2 diabetes and associated obesity. Concerns 
regarding the safety of GLP-1 analogues in man appear 
to have been allayed, but pharmacovigilance is still 
required. The potential promise of incretin based drugs 
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such as GLP-1 mimetics for the treatment of prediabetes 
still requires detailed investigation. Stable forms of GIP, 
OXM and CCK also appear to offer distinct therapeutic 
possibilities for the treatment of type 2 diabetes based on 
data from animal models and preliminary human studies. 
Given this, and the multifactorial pathological nature of 
diabetes, it is not unexpected that concurrent activation 
of more than one regulatory peptide receptor signalling 
pathway appears to have promise for the future 
treatment of diabetes. This may be achieved through 
the development of double or triple acting agonists or 
use of a cocktail of existing peptidergic drugs. However, 
note should be taken of emerging evidence suggesting 
the utility of sequential peptide exposures to facilitate 
essential periods of beta-cell rest. Taken together, future 
advances in our understanding of gut peptide biology, 
coupled with therapeutic application, should lead to an 
expansion of clinically available gut peptide-based drugs 
with far-reaching benefits to the patient.
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Abstract
Because of the intimate association of obesity with 
type 2 diabetes mellitus (T2DM), during the last two 
decades, extensive research work is being conducted to 
find out whether the coexistence of the two is a simple 
association or there is a positive correlating link between 
the two. In this article, an attempt has been made to 
collect and analyse the recent developments in this 

field and to arrive at a conclusion on the subject. The 
possible role of several important factors (obtained from 
adipocytes/not of adipocyte origin) in linking the two has 
been discussed in detail. Some of the agents, specifically 
adiponectin, are beneficial (i.e. , reduce the incidence 
of both), while others are harmful (i.e. , increase their 
incidence). From the analysis, it appears that obesity and 
T2DM are intimately linked.

Key words: Obesity; Insulin; Insulin resistance; Type 2 
diabetes mellitus; Adipocyte

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: The objective of this article is to establish the 
connection of obesity with that of insulin resistance (IR) 
and type 2 diabetes mellitus (T2DM) by analyzing the 
recent developments in this field. The factors linking the 
three have been found to be some adipocytokines as well 
as certain other factors not of adipocyte origin. Of these, 
adiponectin appears to play the most beneficial role (so 
also leptin, peroxisome proliferator-activated receptors, 
apelin, etc.), while others (tumour necrosis factor-alpha, 
interleukin-6, resistin, retinol binding protein-4, dipeptidyl 
peptidase-4, plasminogen activator inhibitor-1, visfatin, 
free fatty acid, angiotensin Ⅱ and toll-like receptors) are 
harmful. Agonists and antagonists of these factors may 
be designed to fight against obesity, thereby achieving 
protection for IR and T2DM.

Chakraborti CK. Role of adiponectin and some other factors 
linking type 2 diabetes mellitus and obesity. World J Diabetes 
2015; 6(15): 1296-1308  Available from: URL: http://www.
wjgnet.com/1948-9358/full/v6/i15/1296.htm  DOI: http://dx.doi.
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INTRODUCTION
It is practically established that type 1 diabetes 
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mellitus is an autoimmune disorder where the tissue-
specific antibodies target and cause complete or near 
complete destruction of islet-β-cells, leading to absolute 
insulin deficiency. In contrast, type 2 diabetes mellitus 
(T2DM) is usually a hereditary disorder, commonly 
(80%) associated with obesity, where deficient insulin 
action may be due to a real deficiency of insulin or a 
relative one associated with normal or even elevated 
plasma concentrations of insulin, i.e., insulin resistance 
(IR). Such simultaneous occurrence of the two (T2DM 
and obesity) suggests the possibility of a strong link 
between them, and during the past two decades 
several positive correlations between them have been 
established by many workers[1-4]. Besides obesity which 
is directly linked to T2DM via adipocytokines, some 
nonadipocytokines have been found to be related 
with T2DM indirectly by interfering with the growth, 
development and functions of adipocytes (mentioned 
later). In this article, an attempt has been made to 
collect and analyse some such authentic work-results 
together that will help the reader to comprehend and 
assess the developments in this field.

The intimate association of T2DM and obesity is a 
world-wide phenomenon. Though much knowledge 
about the pathophysiology, course and consequences of 
T2DM has been gathered, it is not so with obesity, which 
was almost practically considered as a cosmetic problem. 
But recently, because of its frequent association with 
T2DM as well as with hypertension, extensive work is 
being continued on the adipocyte anatomy, distribution 
pattern, physiological function, pathological role and its 
possible link with T2DM and hypertension. 

PHYSIOLOGICAL ROLE OF ADIPOCYTES 
AND ADIPOSE TISSUE
Primary physiological role of adipose tissue is to insulate 
and cushion the body, to store fat when it is in excess 
and to supply it when needed[5]. The exogenous and 
endogenous pathways of lipid metabolism, during which 
free fatty acids (FFAs) are released from the lipoprotein 
(chylomicron, very low density lipoprotein, etc.) - trigly
ceride (TG) content upon hydrolysis by the enzyme 
lipoprotein lipase (LPL), their (FFAs) subsequent storage 
in fat depots as TG again, and their remobilisation into 
the periphery by hydrolysis of these stored TGs by the 
hormone sensitive lipase (HSL), is well established[5,6]. 
Insulin plays a major role for maintenance of adipocyte-
fat content as it is a potent activator and inhibitor of LPL 
and HSL, respectively[5].

SECRETIONS OF ADIPOCYTES 
(ADIPOCYTOKINES)
Recently, adipocytes are considered as endocrine 
structures because of their wide variety of chemical 
secretions (adipocytokines), which affect many diverse 
physiological functions and related pathological processes 

of the body, like metabolism of carbohydrates and 
lipids, coagulation of blood, maintenance of blood 
pressure, feeding behaviour and inflammation, affecting 
almost all the organs of the body. Increased adipocyte 
number and adipose-tissue mass have been found to 
result in increased plasma adipocytokine level except 
adiponectin, whose plasma concentration is actually low 
in obesity[5]. Diseases like obesity, T2DM and metabolic 
syndrome are associated with altered plasma adipokine 
levels.

A brief discussion of the adipocytokines known till-date 
along with their possible roles in genesis or amelioration 
of IR and T2DM is made below. Besides the adipokines, 
possible involvement of certain other factors (not of 
adipocyte origin) has also been taken into account 
(Figure 1). 

Leptin
Several physiological functions of leptin along with its 
source and metabolism have been extensively discussed. 
This adipokine, which is a product of “ob” gene but 
mediates its function through the receptor coded by “db” 
gene, is involved in energy homeostasis of the body by 
interfering with the food-behaviour of the animal centrally 
(hypothalamus) via several hormones[7].

Many studies on mice and human beings have 
shown a beneficial and balancing complementary rela
tionship between leptin and insulin where leptin has 
been found to reduce appetite, obesity and IR along with 
improvement of metabolic disturbances associated with 
T2DM. Moreover, mice with db/db gene (deficient leptin 
action) have been found to be obese and diabetic[7]. 

Though the receptors for insulin and leptin are 
different, both of them mediate their action through 
some common second messengers. Therefore, it is 
possible that leptin may trigger some of the same 
downstream events triggered by insulin. Increase in 
tissue sensitivity of insulin by leptin may be due to 
later’s action on oxidation of FFAs which is increased in 
skeletal muscles leading to its (FFAs) decreased blood 
concentrations[7]. 

Because of such functional cooperation, it may be 
assumed that obesity due to inadequate leptin action 
may predispose or get associated with IR and T2DM.

Tumour necrosis factor-α
The role of tumour necrosis factor-α (TNF-α) as a 
pro-inflammatory cytokine is well established[8]. It 
is produced by macrophages (mainly) as well as by 
some other cell types including visceral adipocytes[8-10]. 

Recently, it has been shown that besides its pro-
inflammatory property, increased TNF-α inhibits insulin 
transduction mechanism, resulting in inadequate 
glucose metabolism, IR and obesity. Because visceral 
fat is a source of TNF-α, increase in such fat (obesity) 
leads to increased production of this cytokine, which 
aggravates obesity and a vicious cycle is established 
leading to predisposition, onset and progression of 
T2DM along with IR. Hence, reduction of obesity, which in 
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turn may lead to decreased formation of TNF-α, may help 
to prevent genesis, progression and complications of 
T2DM[8]. Besides inhibiting insulin signalling mechanism, 
TNF-α also has been found to inhibit glucose-induced 
insulin secretion from b-cells, cause damage to 
insulin strand and enhance b-cell apoptosis. However, 
such functions of TNF-α have been demonstrated in 
vitro with concentrations of the cytokine, which was 
much higher than in vivo plasma concentrations[5]. 
Moreover, besides visceral adipocytes, macrophages 
and other cells also produce TNF-α, which may contribute 
towards the elevated level of this cytokine in obesity[10]. 
Therefore, obesity and increased TNF-α levels cannot 
be directly and definitely implicated with T2DM, 
although they seem to have a role which needs further 
investigations[5,8,9]. 

Interleukin-6
It is another pro-inflammatory cytokine produced by 
many cell types (fibroblast, endothelial cells, monocytes) 
in the body including adipocytes, the production (by 
adipocytes) being increased in obesity. In vitro studies 
as well as investigations on mice have shown interleukin 
(IL)-6 to upregulate the production of vascular endothelial 
growth factor, which is thought to support angiogenesis 
during adipose tissue growth, leading to increase in the 
production of IL-6 further (similar to TNF-α)[5,10].

IL-6 action is mediated through a cytokine class 
one receptor subtype involving Janus kinase/signal 
transducers and activators of transcription (JAK/STAT) 
signal transduction pathway, whereas insulin action 
is mediated through a receptor family having intrinsic 
tyrosine kinase activity, signal transduction being carried 
out through insulin receptor substrate (IRS) proteins. It 
has been clearly demonstrated that inspite of entirely 
different receptor involvement, a strong interaction 

occurs between the receptor signalling pathway of 
IL-6 and insulin, leading to impaired biological effect 
of the later. Though not fully clear, the interaction may 
involve activation of tyrosine phosphatase, leading to 
dephosphorylation and inactivation of tyrosine kinase 
activity or an interaction between suppressor of cytokine 
signalling proteins and insulin receptors, resulting in 
deficient insulin action[10]. Therefore, it appears that 
elevated plasma levels of IL-6 due to any cause (not 
necessarily of body fat) may get associated with IR and 
hence, increased risk of diabetes[5].

Resistin
This pro-inflammatory cytokine, besides monocytes 
and macrophages, is also produced by adipocytes. It 
is so named, because of its capacity to resist insulin 
action[1,10,11]. It has a molecular weight of 12.5 kDa and 
possesses 108 amino acid residues in humans. Unlike 
adiponectin, this polypeptide has a low circulatory 
level, which is increased in subjects with IR, T2DM and 
metabolic syndrome[3].

Several workers have demonstrated a definite 
role of resistin in linking obesity to T2DM, during which 
the cytokine has been found to modulate the insulin 
signalling pathway, leading to development of IR[2]. 
Increased production of resistin has been found to be a 
result of adipocyte differentiation as well as increase in 
their number. Locally (from adipocytes) released resistin 
may play a paracrine role, resulting in inhibition of insulin-
induced glucose uptake by adipocytes, which prevents 
their (adipocytes) further differentiation, thereby 
reducing its own synthesis and release. This observation 
may suggest a reciprocal relationship between the two 
hormones which may further be supported by the fact 
that rosiglitazone (an oral antidiabetic drug) decreases 
the circulating concentration of resistin, whereas diet-
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Cytokines taking part in linking T2DM with obesity

Leptin TNF-α IL-6 Resistin RBP-4 DPP-4 PAI-1 Visfatin Apelin FFA Adiponectin

PPAR Carnitine Calcium ANG II TLRs

PPAR-α PPAR-γ PPAR-δ

Adipocytokines Nonadipocytokines

Figure 1  Cytokines linking type 2 diabetes mellitus with obesity. TNF-α: Tumour necrosis factor-alpha; IL-6: Interleukin-6; RBP-4: Retinol binding protein-4; 
DPP-4: Dipeptidyl peptidase-4; FFA: Free fatty acid; PPAR: Peroxisome proliferator-activated receptor; Ang Ⅱ: Angiotensin Ⅱ; TLRs: Toll-like receptors; T2DM: Type 
2 diabetes mellitus; PAI-1: Plasminogen activator inhibitor-1.



induced and genetic forms of obesity increases it[11]. 
Moreover, neutralization of resistin has been found 
to increase the insulin-induced uptake of glucose by 
adipocytes, whereas resistin itself decreased it. 

Recently, it has been observed that resistin-knockout 
mice show lower fasting blood sugar with increased 
glucose tolerance and insulin sensitivity associated 
with reduced hepatic output of glucose. The possible 
mechanism of this observation may be an overactivity 
of AMP-activated protein kinase (AMPK) resulting from 
lack of resistin, leading to reduced expression of genes 
responsible for hepatic neoglucogenesis. This possible 
mechanism suggests an opposite role of resistin to that 
of adiponectin. Again, it was observed that when these 
resistin-knockout mice were fed with high fat diet, they 
became obese and IR like their wild counterparts[10]. 
All these observations suggest a potential positive link 
between obesity and T2DM[1]. 

Retinol-binding protein-4
This adipocytokine, which is primarily a vitamin A 
-transport protein, has been recently shown to be linked 
with IR. Down-regulation of adipocyte GLUT-4 (glucose 
transporter) has been found to increase the secretion 
of retinol-binding protein-4 (RBP-4) from adipocytes. In 
mice, increased serum levels of RBP-4 has been found 
to be associated with decreased uptake of glucose by 
skeletal muscles and increased hepatic neoglucogenesis. 
On the other hand, insulin sensitivity was found to be 
increased when serum RBP-4 levels were low[12]. Similar 
positive correlations between raised plasma RBP-4 level 
and IR, plasma glucose, BMI and homeostatic model 
assessment-IR have also been shown in nondiabetics 
with a high genetic predisposition for T2DM. Interestingly, 
in this experiment, it was observed that serum RBP-4 
levels were raised before significant appearance of 
diabetic markers[13]. Such an observation indicates 
the “elevated plasma RBP-4 level” to be a signal for 
development of insulin resistance and subsequent T2DM 
in future[12,13]. In another experiment, it has been shown 
that excess of RBP-4 relative to retinol (RBP to retinol 
ratio) is more accurate in predicting the development of 
T2DM than raised RBP-4 levels alone[14].

Dipeptidyl peptidase-4
The incretins (glucagon-like peptide-1 and glucose-
dependent insulinotropic hormone) are known to possess 
favourable effect on carbohydrate and lipid metabolism 
as they increase postprandial insulin release along with 
a decrease in release of glucagon. The two incretins, 
like several other glycoprotein and peptide substrates, 
are metabolically degraded by the enzyme dipeptidyl 
peptidase-4 (DPP-4), which reduces their favourable 
metabolic effects in relation to diabetes and therefore 
may be considered as diabetogenic. Hence, DPP-4 
inhibitors (sitagliptin, vildagliptin, etc.) are now used 
extensively for management of T2DM along with other 
antidiabetic agents[15].

Recently, it has been shown that like other cells, 
adipocytes also express DPP-4 and substantial over
expression is found in visceral fat of obese persons.
Experiments have demonstrated that DPP-4 expression 
and circulating DPP-4 concentration are well-correlated 
with adipocyte size and adipose tissue inflammation. 
This may suggest a stimulatory role of pro-inflammatory 
adipokines on expression of DPP-4 from adipocytes and 
other tissues. Thus, increased release of DPP-4 from 
visceral adipocytes of obese persons may enhance the 
metabolic degradation of incretins in an autocrine or 
paracrine manner, thereby reducing their favourable 
effect on carbohydrate and lipid metabolism which in 
turn may predispose the concerned obese person for 
developmen of T2DM and metabolic syndrome. In 
another study, it has been shown that explants from 
subjects release more DPP-4 and the release is reduced 
after weight reduction[15]. Moreover, in insulin- sensitive 
obese patients, plasma concentration of DPP-4 has been 
found to be lower than those of insulin-resistant obese 
diabetics[16]. All these physiological and experimental 
observations suggest a strong link between T2DM and 
obesity, where the linking factor appears to be DPP-4. 

Plasminogen activator inhibitor-1
This prothrombotic cytokine, besides being produced by 
vascular endothelial cells, is also produced by adipocytes, 
production being more from omental adipose tissue 
than that of subcutaneous adipocytes[17]. Some recent 
studies have found a direct contribution of this cytokine 
towards the complications of obesity like T2DM and 
coronary thrombosis, as well as increased accumulation 
of visceral fat[18]. Nowadays, plasminogen activator 
inhibitor-1 (PAI-1) is being considered as a strong 
predictor of T2DM, and has been found to stimulate 
adipocyte differentiation, which may be mediated 
through reducing peroxisome proliferator-activated 
receptor (PPAR)-γ activity, resulting in more production 
of resistin. It has been demonstrated that adipocyte-
PAI-1 increases the production of TNF-α (an autocrine 
action) in adipocytes that reduces insulin action and 
predisposes to T2DM. Moreover, PPAR-γ receptor has 
been found to be downregulated both by PAI-1 and 
TNF-α. Hence, inhibition of PAI-1 action on adipocytes 
may prevent obesity and IR, and retard adipocyte 
differentiation and fat accumulation by removing not 
only its (of PAI-1) own antiinsulin action but also that of 
resistin and TNF-α[7,17].

Visfatin
This adipocytokine, a pro-inflammatory marker of adip
ose tissue, is mainly produced by visceral adipocytes 
of humans and mice, whose plasma concentration 
increases along with the progression of obesity[19-21]. 
Its production is upregulated by hypoxia, inflammation 
and hyperglycemia, and downregulated by insulin, 
somatostatin and cholesterol reducing statins. Besides 
visceral fat, intracellular presence of visfatin has also 
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been demonstrated in many other tissues and organs, 
the location being both cytoplasmic and nuclear[21].

Functions of visfatin are difficult to explain as they 
appear to be contradictory. The cytokine has been found 
to possess insulinomimetic effect in cultured cells[19,20] 
and lowers plasma glucose concentration in mice[19]. It 
has also been shown to cause hypoglycaemia by reducing 
hepatic output of glucose and increasing utilisation of 
glucose in adipocytes and monocytes[21]. Inspite of such 
favourable insulinomimetic action[19,20], this cytokine has 
been found to be associated with IR and possesses a 
direct relationship between its plasma concentration 
and T2DM[21,22]. This anomaly may be explained by the 
fact that it also produces hyperlipidemia, which may 
be responsible for IR and hence T2DM (As T2DM may 
either be due to deficiency of insulin or IR)[22]. The 
resultant effect seems to be favouring the development 
of T2DM, which in turn suggests the pernicious role of 
visceral adipose tissue (VAT) in human obesity-related 
T2DM and accompanying metabolic disorders[20].

Besides these T2DM-related pathological functions, 
visfatin, by its endocrine, autocrine as well as paracrine 
function, has been found to cause increase in cell pr
oliferation and biosynthesis of nicotinamide mono- 
and dinucleotides[16], significance of which is yet to be 
ascertained. 

Apelin
Apelin, a small peptide adipokine, has also been found 
to be present in a number of tissues. It is the ligand of 
the G-protein-coupled receptor (GPCR) APJ, and has 
several active forms, which include apelin 13, apelin 17 
and apelin 36. It is considered as a beneficial adipokine 
as it has been found to possess antiobesity and anti
diabetic properties, because of its potent positive 
role[23,24] in energy metabolism and insulin sensitivity 
improvement[24]. Such actions appear to be due to 
promotion of complete lipid combustion[23] in muscle of 
IR mice through mitochondrial biogenesis and tighter 
matching between fatty acid oxidation and TCA cycle. 
Such apelin- stimulated improvement of FA oxidation 
led to decreased levels of acyl-carnitines and enhanced 
insulin-stimulated glucose uptake in soleus muscle[25]. 
For such beneficial actions, apelin may be considered 
as a promising useful therapeutic agent for T2DM and 
other metabolic disorders[23].

FFA
FFAs, which are produced during the metabolism of 
exogenous and endogenous lipids, play an important 
role in the development of IR and hence, genesis of 
T2DM, when their plasma concentration is abnormally 
raised[26].

Mechanisms of FFA-induced IR include inhibition of 
insulin-induced release of NO from endothelial cells, 
resulting in decreased blood flow, inhibition of insulin- 
stimulated glucose transport across the cell membrane 
and/or inhibition of intracellular phosphorylation of 

glucose by interfering with insulin signal transduction 
pathway. Acute elevation of FFA in plasma has been 
found to be associated with IR, which may account for 
50% of IR in obese individuals with T2DM[27].

Intracellular mechanism of FFA-induced IR has been 
demonstrated both in vivo and in vitro, where there 
was an activation of pro-inflammatory nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-
kB) pathway. It has been shown in vivo that acute 
increase in FFA level resulted in activation of NF-kB 
pathway in human skeletal muscle and rat liver, leading 
to increased production of pro-inflammatory cytokines, 
i.e., TNF-α, IL-1b and IL-6, in both the test organs along 
with an increase in the concentration of macrophage 
chemoattractant protein-1 (MCP-1) in circulation. In 
health as well as in T2DM, insulin tends to reduce 
FFA-induced-IR by lowering the plasma concentration 
of FFAs through its lipogenic as well as antilipolytic 
action along with increased intracellular oxidation of 
FFA. However, in obesity, which is considered as an 
inflammatory state, there is not only an increase in FFA, 
but also an increase in the plasma concentration of pro-
inflammatory cytokines, which together are liable to 
cause IR and T2DM[27].

Thus, obesity alone or along with increased FFA, can 
create and maintain a low grade inflammatory state by 
production of pro-inflammatory cytokines (TNF-α, IL-6, 
etc.), which may induce IR and T2DM. The condition 
may be further aggravated by antiinsulin action of FFA 
on glucose metabolism[27]. 

Adiponectin
This adipocytokine is being extensively studied world-
wide since the past decade because of its remarkable 
insulin sensitizing property (IR is the major problem in 
T2DM) as well as antiatherogenic action (dyslipidemia, 
commonly associated with T2DM, is responsible for 
atherosclerotic complications of T2DM), thereby playing 
an important role in delaying and suppressing the 
metabolic derangements, which result in IR, T2DM, 
metabolic syndrome and complications of diabetes 
including vascular and cardiac. These two important 
functions of adiponectin involves myriads of interrelated 
molecular mechanisms, which interconnect it with 
other diabetogenic/antidiabetic adipokines as well as 
with many physiological and biochemical processes 
associated with maintenance of energy balance from 
metabolism of carbohydrates and lipids[3]. Because of 
such widespread metabolic involvement, an attempt 
has been made to discuss the pathophysiological role 
of this key adipocytokine in detail, which in concert with 
its siblings appears to play an important role in linking 
T2DM with obesity.

Source and location: Adiponectin, secreted by 
both white and brown adipose tissue, has several 
other names like gelatin binding protein-28, AdipoQ, 
Adipocyte complement-related protein-30 and OP-MI. 
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Adiponectin mRNA presence is lower in VAT than that 
of subcutaneous adipose tissue[4,10]. Normal plasma 
concentration of this cytokine varies from 5-30 µg/mL 
and is inversely proportional to abdominal obesity, 
IR and T2DM. In some animal models, a decrease in 
plasma adiponectin concentration was found to precede 
the onset of T2DM and was parallel with decreased 
insulin sensitivity. The cytokine circulates in blood in 
multimeric forms, like trimeric, hexameric and high 
molecular mass species, each of which plays a specific 
role in maintenance of energy homeostasis[4,7].

Control of secretion: Control of adiponectin secretion is 
effected by: (1) some hormones; (2) many adipokines; 
(3) certain receptor families including its own; (4) endo
plasmic reticulum (ER) and oxidative stresses; and (5) 
several other factors.

Hormonal control: Sex hormone: Adiponectin plasma 
concentration has been found to be higher in women 
than men, which may be due to the difference in 
concentration of oestrogen and androgen, suggesting 
a presumably stimulating role of oestrogen on 
synthesis and secretion of this adipokine[5,7]; Insulin: The 
relationship between plasma insulin concentration and 
adiponectin secretion appears to be peculiar, confusing 
and contradictory, as the experimental observations do 
not correlate as expected. 

Though insulin favours adiponectin biosynthesis 
through PPAR-γ via inhibition of FOX01 (an inhibitor of 
PPAR-γ), type I diabetic patients who practically have 
no circulating insulin, contrary to the expectations, 
show elevated levels of plasma adiponectin. Moreover, 
patients, with defective insulin receptors due to 
abnormal genes coding for them, also show raised 
circulating adiponectin levels. Furthermore, adiponectin 
concentration, unlike other insulin-resistance-inducing 
adipokines, has been found to be decreased in obesity 
and insulin-resistant models. From such observations 
it seems that IR decreases plasma adiponectin 
concentration. This may be explained by taking into 
account the role of oxidative stress which is known to 
increase IR and to decrease adiponectin production. 
In obesity, adipocytes may develop oxidative stress, 
leading to decreased expression of adiponectin by them. 
That IR decreases adiponectin expression may further 
be supported by the observation that hyperinsulinemia 
associated with euglycemia (an IR state) significantly 
decreases the plasma adiponectin concentration and 
selectively downregulates its high molecular weight 
(HMW) form. The disparity between the above men
tioned experimental observations in relation to role 
of insulin on adiponectin formation is not known and 
appears to be complicated[4].

Control by adipokines: TNF-α and IL-6 are con
sidered to be established inhibitors of adiponectin 
synthesis[28]. As their synthesis and secretion increase 
in obesity, adiponectin plasma concentration decreases 

accordingly[4,29]. 

Control by certain receptors: PPAR-γ: This PPAR 
subfamily transcription factor, which is mainly found 
in adipocytes, has been shown to possess a positive 
regulatory role on adiponectin gene expression leading 
to increased production of proteins like Erol-La and 
DsbA-L, which take part in synthesis and secretion of 
adiponectin[4]; Own receptors: Circulating adiponectin 
concentration has been found to be inversely related 
to muscle AdipoR1/2 (receptor subtypes), but directly 
related to subcutaneous AdipoR2

[4,30]. 

ER and oxidative stresses: ER is known to be an 
intracellular fine network of microtubules. It is continuous 
with the nuclear membrane, and is called sarcoplasmic 
reticulum in muscles. It controls intracellular calcium 
ion uptake and release besides its other functions, 
thereby effecting muscular contraction and relaxation. 
ER stress, which is produced in obesity, has been shown 
to be negatively related to adiponectin production by 
adipocytes. The molecular mechanism involved has 
been studied in 3T3LI-cells, where oxidative stress in ER 
lead to increased production of H2O2, which, via protein 
kinase B (Akt) and JAK/STAT pathway, appreciably 
suppressed the expression of adiponectin mRNA and 
consequent reduction in synthesis of proteins required 
for adiponectin formation. Moreover, in this model 
H2O2 has been found to increase the production of 
PAI-1 and IL-6, which are known to inhibit adiponectin 
synthesis[31]. 

Other factors: Obesity: Unlike other adipokines, 
adiponectin secretion has been found to be decreased 
in obesity. Though the exact cause of such reduction 
is not known, the suggested causes include increased 
production of TNF-α and IL-6[28], generation of a 
hypoxicmicroenvironment in the adipocyes of increased 
fat mass, and obesity-induced increased production 
of insulin like growth factor binding protein-3, which 
inhibits adiponectin transcription via hypoxia inducible 
factor-1α dependent pathway[4,32]; Drugs: PPAR-γ 
agonists (thiazolidinediones-TZDs), which increase 
insulin sensitivity, have been found to increase the 
plasma concentration of adiponectin, whereas anti-HIV 
drugs like protease inhibitors decrease it[29].

Physiological functions of adiponectin: Adiponectin, 
along with other adipokines, interferes in several meta
bolic functions, like lipid synthesis and storage, 
neoglucogenesis and peripheral utilisation of glucose, 
which have been demonstrated in skeletal and cardiac 
muscles, adipocytes and hepatocytes[31]. But, it differs 
from other adipokines in several aspects. Unlike 
others, its circulating concentration has been found 
to be decreased in obesity (particularly abdominal 
obesity) and T2DM, and instead of increasing insulin 
resistance, it decreases it in addition to possessing 
antiatherosclerotic effect. In animal models and in 
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patients with obesity and T2DM, the cytokine has been 
shown to stimulate fatty acid (FA) oxidation, reduce 
lipid accumulation in muscles, decrease plasma FA 
concentration and increase insulin sensitivity. Because 
of such beneficial involvement in metabolic functions 
(lipids and carbohydrates), IR and atherosclerosis, 
this adipokine is expected to impart protection against 
coronary heart diseases, steatohepatitis, non-alcoholic 
fatty liver diseases and a wide variety of cancers[33].

Cellular basis of mechanism of action: Functions 
of adiponectin have been found to be mediated by 
three receptor subtypes namely, AdipoR1, AdipoR2 and 
T-cadherin. AdipoR1 and AdipoR2 are 7 transmembrane 
proteins but dissimilar to GPCRs. Its receptor distribution 
pattern varies from cell type to cell type - AdipoR1 
being found abundantly in muscles, while AdipoR2 is 
mainly expressed in hepatocytes. Both the receptors 
are present in almost every tissue, but in a particular 
tissue, usually one type predominates. Moreover, 
degree of affinity of these receptors for different forms 
of adiponectin also varies[4,7]. AdipoR1 has high affinity 
for globular adiponectin (a cleaved part of full-length 
adiponectin) but low affinity for full-length adiponectin, 
whereas AdipoR2 has intermediate affinity for both 
forms. Hypoadiponectinemia, associated with IR, 
upregulates both the receptor types. Such upregulation 
also occurs in physical activity, suggesting an association 
between adiponectin hormone system and exercise-
induced improvement in IR[7]. Adiponectin, binding to 
its cell surface receptors, activates several intracellular 
signalling molecules like p38MAPK, PPAR, the RAS-
associated protein Rab5, PI3K, Akt and AMP-activated 
protein kinase (AMPK), of which AMPK system and 
PPARs play an important and dominant role leading to 
modification of lipid and carbohydrate metabolism[4,7,29].

As has already been mentioned, in this article 
emphasis would be given on two important protective 
physiological functions of adiponectin, i.e., protection 
against IR and artherosclerosis. Obesity, T2DM, dys
lipidemia and IR are intimately related, where one 
leads to the other and once developed, aggravate each 
other thereby establishing a vicious cycle, leading to 
development of practically all the dangerous comp
lications of T2DM[34]. Increased fatmass, as found 
in obesity, not only increases the production of bad 
adipokines who enhance this cycle further but also 
decreases the production of the good one-adiponectin, 
deficiency of which contributes significantly towards 
the development, continuation and aggravation of 
this cycle. Adiponectin has been shown to prevent the 
development as well as to break this dangerous cycle, 
thereby posing itself as a potential therapeutic agent in 
such condition.

Mechanisms of antiatherosclerotic and IR 
preventing actions of adiponectin: As these two 
actions are interrelated, it is convenient to discuss 
them together. It has already been mentioned that 

adiponectin increases FA oxidation in mitochondria 
that leads to a decrease in plasma concentration of 
FA. Reduced level of FA in circulation prevents the 
development and progression of atherosclerosis and 
IR. Multiple biochemical actions at cellular level are 
modified for this action of adiponectin that needs an 
extensive discussion and correlation between them to 
arrive at a conclusion.

Adiponectin-induced FA oxidation is primarily 
mediated by phosphorylation (activation) of AMPK - 
a multi-subunit protein kinase, which appears to be a 
sensor of intracellular energy status through activation 
of PPAR-α receptor. It has been demonstrated that 
when muscles were treated with adiponectin or when 
its receptors were expressed ectopically, there occurred 
an increase in AMPK phosphorylation and FA oxidation 
in the muscles that was abolished by dominant-
negative AMPK use. Stressful conditions, like heat 
shock, hypoxia, starvation and exercise, etc., which 
need expenditure of more energy (denoted by high 
AMP - to - ATP ratio) have been found to cause AMPK 
activation. This important signalling molecule (AMPK) 
is also directly activated by other upstream kinases, 
where they cause phosphorylation of its threonine 
residue in the kinase domain. In skeletal muscle, 
activated AMPK increases FA oxidation by stimulating 
the phosphorylation (leading to inactivation) of the 
key enzyme acetyl-CoA carboxylase (ACC). Reduced 
ACC activity, in turn, decreases intracellular malonyl-
CoA concentration along with stimulation of carnitine 
palmitoyl transferase 1 (CPT1) activity, leading to 
increased entry of long-chain FAs into mitochondria and 
hence, more of their peripheral oxidation. The fact, that 
adiponectin increases insulin sensitivity by decreasing 
plasma FA concentration, has been demonstrated in 
obese and T2DM patients, where serum adiponectin 
concentration is low. In such patients, administration 
of adiponectin has been found to increase insulin 
sensitivity by decreasing their plasma FA and TG[33].

Metabolic stressful conditions like muscle contraction, 
hypoxia, ischemia and hyperosmolality, etc., not only 
increase AMPK activation (as mentioned before), but 
also stimulate the activity of p38MAPK (a signalling 
molecule activated by inflammatory cytokines). This 
indicates an association between the two signalling 
molecules during signal transduction, though the 
agonists (adiponectin, inflammatory cytokines) inducing 
the signals are different. In fact, adiponectin has been 
found to stimulate the activity of not only AMPK but also 
that of p38MAPK and PPAR-α in target tissue though the 
subsequent signal transduction pathway following these 
three activations is not fully known. Other evidences in 
muscles suggest a sequential activity of these three, 
leading to increased FA oxidation and increased glucose 
uptake by muscles. But it has been shown that when 
primary hepatocytes are treated with adiponectin, their FA 
oxidation is not increased, which suggests a differential 
effect of the cytokine on FA oxidation of muscles and 
liver[33].
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ER stress decreases adiponectin secretion: 
Several workers have shown that ER stress in adipo
cytes decreases adiponectin secretion. It has been 
demonstrated that properly integrated mitochondrial 
function in adipocytes is necessary for adequate 
secretion of adiponectin. Like other cells, growth and 
development of adipocytes occur through differentiation 
and hypertrophy, which need increased mitochondrial 
function, because of greater energy requirement. Newly 
differentiated adipocytes are small in size, because of 
less accumulated TG due to increased FA oxidation in 
them, as the mitochondrial content and activity are 
more[29].

It has been shown that these small adipocytes 
synthesise and secrete more adiponectin because of 
their high mitochondrial functional level, whereas large 
hypertrophied fat cells, as found in obesity, produced 
the cytokine to lesser extent because of impaired 
mitochondrial function. Though till now, adiponectin 
synthesis has not been properly correlated with increased 
mitochondrial function, it may be due to much greater 
consumption of energy for the synthesis of this cytokine 
protein in comparison with other proteins. Therefore, 
it appears that synthesis of adiponectin in adipocytes 
needs high consumption of energy, which is produced 
by elevated (adequate) mitochondrial function. In 
support of this, it has been shown that rosiglitazone 
and others agents like Ad-NFR-1, which increase 
mitochondrial biogenesis, also cause an increase in 
adiponectin synthesis. This observation points the finger 
towards mitochondrial dysfunction as the cause of low 
adiponectin level in obesity[29].

Moreover, several evidences have been put forward 
where obesity-induced mitochondrial dysfunction has 
resulted in ER stress, which decreases adiponectin 
secretion and development of IR. Both ER stress and 
mitochondrial dysfunction have been demonstrated 
to activate a series of reactions involving sequential 
activation of JNK and activating transcription factor 
3 (ATF3), which in turn decrease the transcription of 
adiponectin. When JNK and ATF3 are inhibited, adip
onectin transcription is restored. It has also been 
suggested that ER stress and impaired mitochondrial 
function are separately responsible for genesis of IR in 
various tissues of obese persons[29].

Adiponectin-induced increase in FA oxidation via 
activation of AMPK and phosphorylation of ACC is of 
short duration, as ACC phosphorylation is short-lived. 
Hence, this pathway cannot be considered to be fully 
responsible for the long term effect of adiponectin in 
causing weight loss and FA oxidation, for which action 
through PPAR-α is thought to be involved, because 
PPAR-α action has been found to persist even after 
initial signalling is over. This is so, because adiponectin 
has been found to increase transcriptional activity 
of PPAR-α and subsequent expression of its target 
genes via activation of AMPK. Involvement of AMPK 
is supported by the fact that when PPAR-α agonists 
were administered to obese animals, there occurred an 

equivalent and sufficient lowering of lipids, as was found 
with adiponectin. This fact was further supported by in 
vivo administration of 5-Aminoimidazole-4-carboxamide 
ribonucleotide (AICAR) to lean and obese Zucker rats 
where the compound was found to decrease plasma 
FA and TG levels significantly, because AICAR is known 
to increase the transcriptional activity of PPAR-α via 
activation of AMPK[33].

Anti-inflammatory action of adiponectin: Mention 
has been made about the decreased secretion of 
inflammatory cytokine TNF-α by adiponectin from 
macrophages that contribute towards its antiath
erogenic effect. This anti-inflammatory property is also 
likely to be involved in its IR reducing action, because 
TNF-α and IL-6 are known to decrease adiponectin 
formation and to induce IR[10,28]. 

Recently, it has been shown that NF-kB activation 
in endothelial and monocytic cells, which is involved 
in causation of inflammation and metabolic alteration 
in obesity, is suppressed in these cells by adiponectin. 
Moreover, both forms of adiponectin-globular as well as 
full-length, have been found to decrease the production 
of pro-inflammatory cytokines IL-6 and MCP1 from 
inflammed adipocytes that may be due to inhibition of 
NF-kB activity as well as PPAR-α expression[35]. 

Insulin sensitizing actions of adiponectin: Adipo
nectin aids to insulin sensitivity by several novel 
mechanisms, which include - increased FA oxidation, 
decreased ER stress, improvement in insulin signalling 
pathway, increased (improved) mitochondrial number 
and function, increased insulin secretion, decreased 
hepatic output of glucose, increased uptake of glucose 
by liver and muscle, and increased glucose metabolism.

Adiponectin-induced increase in FA oxidation has been 
demonstrated by several workers[5,10,33,36]. This action of 
adiponectin contributes significantly towards its insulin 
sensitizing action and prevention of development of IR, as 
increased plasma FA concentration is the most important 
cause of IR. In some animal models, adiponectin has 
been shown to decrease FFA concentration in plasma by 
increasing its uptake and oxidation in skeletal muscles. 
On the other hand, acute reduction of plasma FFA 
has been found to be associated with low adiponectin 
concentration, though the exact role of FFA in such 
action is not known[36]. It is well documented that the 
key enzyme responsible for FA oxidation is AMPK, 
which is activated by adiponectin[4,10,31,33]. It has already 
been mentioned that once activated, AMPK inhibits 
the activity of ACC, which not only leads to reduced 
contents of intracellular malonyl-COA but also increases 
activity of CPTI. Such an action increases the entry 
of long-chain FAs into mitochondria and hence, an 
increase in their oxidation. Works on FA oxidation in 
skeletal muscles have shown a sequential activation 
of AMPK, p38MAPK and PPAR-α to be responsible for 
increased FA oxidation. But the signalling pathways and 
components involved in such sequential activation is 
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not known. PPAR-α, a ligand-activated nuclear receptor, 
plays an important role in FA oxidation. This receptor is 
abundantly expressed in tissues like liver, heart, kidney 
and skeletal muscles, who meet their metabolic energy 
consumption from oxidation of FAs. It has been shown 
that HMW adiponectin fraction increases the PPAR-α 
target gene expression. Moreover, in IR rodent models, 
PPAR-α ligands have been found to reduce lipid levels 
and to improve insulin sensitivity. Several studies on 
humans and rodents have shown that both forms of 
adiponectin, HMW as well as low molecular weight 
(LMW), not only increase target gene expression of 
PPAR-α but also increase the phosphorylation of AMPK 
and p38MAPK. But such activity is more pronounced 
and better correlated with HMW fraction than that of 
LMW, suggesting a differential efficacy between the 
two fractions or involvement of multiple pathways in 
increasing FA oxidation in muscles[33].

It has already been mentioned that mitochondrial 
dysfunction in adipocytes induces ER stress, which in turn 
reduces adiponectin transcription, leading to decreased 
production of this adipokine along with development of 
IR[29,31]. Moreover, as discussed earlier, adiponectin, via 
activated AMPK, also improves mitochondrial number 
and function in skeletal muscles[29]. From these two 
observations it may be inferred that adiponectin, by 
counteracting mitochondrial dysfunction (through 
improvement of mitochondrial function), decreases 
ER stress and improves its own secretion, which in 
turn may contribute towards reduction of IR. Mention 
has already been made about the IR-inducing and 
diabetogenic adipocytokine resistin[1,10,11], whose 
plasma concentration is high in IR, T2DM, metabolic 
syndrome and cardiovascular diseases[3]. In contrast, 
its sibiling adiponectin plasma concentration is low 
in such conditions[4], and it has favourable effects on 
them. Such contrasting effects of the two adipokines 
may be due to their comparable domain architecture, 
assembled in a multimeric form, which suggests a 
common regulatory mechanism (opposite to each other) 
on insulin-signalling pathway, as well as on mechanisms 
involved in glucose and lipid homeostasis. In IR and 
T2DM, hypoadiponectinemia along with hyperrestinemia 
have been found to antagonise insulin signalling by 
causing dephosphorylation and deactivation of the key 
enzyme AMPK in skeletal muscles and liver along with 
increased expression of genes coding for the synthesis 
of neoglucogenic enzymes as well as reduced expression 
of IRS-2 and glucose transporter, GLUT-2. The resultant 
effects of such action were decreased FFA oxidation 
in muscles, decreased hepatic uptake of glucose, 
increased neoglucogenesis and glycogenolysis leading to 
hyperglycemia and increased plasma FFA. Impaired FFA 
oxidation may be further aggravated by downregulated 
PPAR-α action[3].

It is well established that insulin resistance is very 
often associated with inadequate functioning of post 
receptor signalling molecules including IRS. It has 
been demonstrated that adiponectin upregulates 

IRS-2 by activation of STAT-3 in liver. Such activation 
was also associated with increased production of IL-6 
from macrophages - an adiponectin action mediated 
through activation of NF-kB, which does not require 
activation of classical AdipoR1 and AdipoR2 receptors. 
Upregulation of IRS-2 definitely improves insulin 
sensitivity, but exact mechanisms of such upregulation are 
not known. Probably, it is effected by an IL-6 dependent 
pathway, which is initiated by adiponectin, through its 
combination with yet another unidentified adiponectin 
receptor. Moreover, though adiponectin activates 
AMPK and PPAR-α through activation of its classical 
AdipoR1 and AdipoR2 receptors leading to increased 
FA oxidation and insulin sensitisation, it has not been 
possible to link AMPK and PPAR-α activation with the 
proper functioning of post-receptor insulin signalling 
molecules[37]. Experiments on skeletal muscles have 
demonstrated that AMPK activation by adiponectin 
occurs by two pathways, out of which one is a major 
one while the other plays a minor role. In the major 
pathway (the APPL1/LKB1-dependent pathway), AMPK 
activation needs the binding of adapter protein APPL1, 
which promotes the translocation of APPL1-dependent 
LKB1 into the cytosol where it is anchored. The same 
pathway has been found to be followed by the insulin 
sensitising drug metformin. Through the minor pathway 
(the phospholipase C/Ca2+/Ca2+/calmodulin-dependent 
protein kinase kinase-dependent pathway), via 
activation of phospholipase C, Ca2+ is released from the 
intracellular calcium ion stores that plays a minor role in 
activation of AMPK[38]. 

Works on skeletal muscles have shown that adip
onectin, through AMPK activation, not only increases 
mitochondrial function, but also increases their number. 
As activated AMPK in skeletal muscles has been 
found to stimulate mitochondrial biogenesis under 
conditions of chronic energy deprivation or endurance 
training, it appears that adiponectin-induced-increase 
in mitochondrial number is due to stimulation of mito
chondrial biogenesis. This action of the adipokine 
points towards its insulin sensitising action, because 
mitochondrial function in skeletal muscles is taken as an 
indicator of whole-body insulin sensitivity. Thus, it may 
be presumed that adipocyte-mitochondrial action, which 
regulates adiponectin synthesis in adipocytes (already 
discussed), also regulates skeletal muscle-mitochondrial 
(or metabolic) activity and insulin action in skeletal 
muscles through adiponectin[29].

Though adiponectin does not have any effect on 
normal insulin secretion, the adipokine has been found 
to increase it in insulin resistant mice fed with high fat 
diet. But in such mice, augmentation of secretion occurs 
only in response to high plasma glucose, but actually 
inhibited when plasma glucose was low. Adiponectin 
appears to possess a protective effect on islet-β-cells, as 
it has been found to reduce the pro-apoptotic effect of 
FFAs and other cytokines on β-cells[5].

Several workers have demonstrated the capacity 
of adiponectin to decrease hepatic output of glucose, 
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thereby contributing towards reduction of plasma 
glucose concentration and hence, increased insulin 
sensitivity[5,10]. One of the important causes of increased 
hepatic output of glucose in diabetes mellitus is 
increased neoglucogenesis due to inadequate insulin 
action. As mentioned earlier, adiponectin inhibits hepatic 
neoglucogenesis by decreasing the formation of two 
important enzymes concerned, through interference with 
the mRNA expression that is necessary for the synthesis 
of these enzymes[10]. Moreover, adiponectin, by increasing 
the oxidation of FAs, decreases their availability for 
utilization in the process of neoglucogenesis.

Adiponectin has been found to increase the uptake 
of glucose by liver and muscles which appears to result 
from improvement in insulin signalling pathway, leading 
to better insulin action and hence, decreased blood 
sugar and increased insulin sensitivity[5].

It has been observed that in obese individuals with 
IR and in patients having metabolic syndrome (who are 
IR), adiponectin receptors are downregulated, which 
suggests inadequate adiponectin action as the cause of 
IR. In vitro and in vivo experiments on skeletal muscles 
have shown adiponectin to increase glucose metabolism 
and insulin sensitivity via activation of AMPK[31]. 

AR (adiponectin: Resistin) and IRAR indices: Upregulated 
resistin, which is followed by PPAR-α downregulation, has 
been found to impair adipocyte differentiation, leading to 
dramatic decrease in adiponectin formation. Because of 
such inverse relationship with respect to both secretion 
and function, it seems to be more predictive to use their 
ratio (AR index-adiponectin: Resistin) in linking obesity 
with T2DM than using either of them alone[3].

Besides AR index another novel IRAR index has 
been coined that seems to be a strong indicator of 
degree of IR in T2DM. The index appears to relate IR 
with AR. As expected, AR index value gets smaller 
and smaller according to the degree of obesity (which 
determines the magnitude of hypoadiponectinemia 
with hyperresistinemia), resulting in a parallel rise of IR. 
Hence, greater the IRAR index value, more is the degree 
of IR in T2DM. 

As IR in T2DM is the major determinant of pro
gression into metabolic syndrome, which in turn, laids 
the foundation for other complications of diabetes, this 
index may also be used to predict the arrival of T2DM 
complications[3]. 

FACTORS NOT OF ADIPOCYTE ORIGIN
In addition to these adipokines, there are some other 
factors (not of adipocyte origin), whose role in linking 
obesity with T2DM cannot be ignored. These factors 
include PPARs, carnitine, calcium, angiotensin Ⅱ and 
toll-like receptors (TLRs). 

PPARs
This nuclear receptor family, consisting of PPAR-α, PPAR-γ 
and PPAR-δ, are primarily related with lipid metabolism 

having fatty acids and their derivatives as their 
endogenous ligands. 

PPAR-α: Besides interference with several steps of lipid 
metabolism, the main results of this receptor activation 
is increased oxidation of FA that leads to decreased 
plasma level of TG by decreasing its synthesis and 
storage in adipocytes. Moreover, PPAR-α activation, 
along with activation of PPAR-γ, has been found not only 
to increase the formation and secretion of adiponectin 
but also to upregulate AdipoR1/AdipoR2

[7].

PPAR-γ: These receptors, mainly expressed in liver 
and adipose tissue, on stimulation, cause gene ex
pression necessary for differentiation of fibroblasts 
into adipocytes, and for lipid synthesis and storage in 
adipocytes. Because of their lipogenicity, they seem 
to decrease insulin sensitivity rather than increase it. 
But, their exogenous agonists-TZDs, have been found 
to decrease IR and increase insulin sensitivity. Such 
paradoxical actions of TZDs, have been shown to be 
due to reduced lipotoxicity in liver and skeletal muscles 
because of lipid storage in adipocytes, and increase in 
number of small adipocytes, which are not only more 
sensitive to insulin action, but also secrete large quantity 
of adiponectin (insulin-sensitising), while decreasing the 
release of resistin and TNF-α (both are IR-inducing)[7].

PPAR-δ: Main result of this receptor activation is 
increased FA oxidation, which contributes towards 
decreasing IR and increasing insulin sensitivity[7]. 

It may be noted that the results of activation of 
these three receptors, particularly activation of those 
of PPAR-α and PPAR-γ, are beneficial in IR and insulin 
sensitivity through their interference with adipocyte 
number (increased number of small adipocytes) and 
function (increased production of adiponectin and 
decreased production of resistin and TNF-α), FA oxidation 
(which decreases TG formation in adipocytes resulting 
in decreased obesity) and upregulation of AdipoR1 and 
AdipoR2 (decreased IR and increased insulin sensitivity). 
As all these functions finally lead to reduced obesity, this 
receptor family can be considered to play a role in linking 
obesity and T2DM.

Carnitine
This vitamin and amino acid, which is derived from yeast, 
milk, liver and muscles (in large quantities), increases 
FFA oxidation through carnitine shuttle reactions. In this 
reaction, carnitine has been found not only to favour 
entry of long-chain FFAs across the mitochondrial 
membrane, but also facilitate the transport of fatty acyl-
CoA into mitochondrial matrix for β-oxidation. Therefore, 
carnitine deficiency, which is commonly found in several 
IR cases, leads to increased concentration of plasma 
FFA and hence, their increased conversion into TG in 
adipocytes, resulting in obesity and further aggravation 
of IR. Moreover, relative carnitine deficiency may occur 
in prolonged metabolic stress, which may add to mito
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chondrial dysfunction, leading to reduced glucose 
tolerance. These two factors may contribute towards 
obesity-associated IR in T2DM. Therefore, like PPAR-
receptor family action, carnitine function in the body may 
contribute towards linking obesity with diabetes as its 
deficiency is reflected upon genes of obesity and IR[7]. 

Calcium
Role of calcium in vario us cellular secretory processes[39], 
including secretion of insulin from islet β-cells, is 
well established. Improper regulation of intracellular 
calcium has been found to affect insulin secretion 
and its tissue sensitivity adversely[40]. High calcium 
intake alone or with vitamin D has been shown to 
reduce not only body weight and fat mass, but also to 
decrease weight gain and adipocyte fat accumulation. 
The mechanisms suggested for such beneficial actions 
include adipocyte apoptosis and reduced adipogenesis 
along with deranged lipid metabolism[40,41]. Moreover, 
epidemiological studies have shown that low calcium 
intake and poor vitamin D status are associated with 
increased risk of obesity[36]. From such observations, it 
may be inferred that obesity, thus developed, may lead 
to increased production of IR-inducing and diabetogenic 
adipokines, thereby linking it (obesity) with IR and 
T2DM.  

Angiotensin II
Renin-angiotensin-aldosterone system, whose primary 
function is to maintain water and electrolyte balance 
of the body and to regulate blood pressure, is known 
to mediate its function by formation of angiotensin Ⅱ 
(AngⅡ). AngⅡ formation occurs through several steps 
where renin of renal origin converts angiotensinogen 
of hepatic origin to AngⅠ, which is then converted to 
AngⅡ by the enzyme angiotensin-converting enzyme 
(ACE) of endothelial cell origin[42]. But recently, a local 
RAAS has been demonstrated in several tissues of 
the body including adipose tissue, which is involved in 
several functions of the adipocytes including adipose 
tissue growth and cell differentiation. It has been 
shown that when AT2 receptors (one of the subtypes of 
angiotensin receptor) are deleted from adipocytes, the 
cell size is reduced, and there is protection from diet-
induced obesity and IR[43]. Such observations suggest 
an additional beneficial role of ACE inhibitors and AT2 

receptor blockers, when used as antihypertensives in 
patients having hypertension with obesity and T2DM[44]. 
Moreover, like low Ca2+ and poor vitamin D status, 
locally generated AngⅡ, via its action on adipocytes, 
may link obesity with T2DM. 

TLRs
TLRs are transmembrane glycoprotein receptors whose 
known function is antigen recognition[6,45]. Recently, 
substantial evidences have been put forward which 
suggest their pathological role in genesis of obesity. In 
this respect, both TLR-2 and TLR-4 have been found 

to be overexpressed on adipocytes in obese persons 
having T2DM. Such overexpressed TLR receptors along 
with similarly overexpressed adipokines in adipose 
tissue of obese individuals may play an important role 
in obesity-associated meta inflammation resulting in IR 
and T2DM. It has been demonstrated that inhibition of 
TLR-2 in skeletal muscles and white adipose tissue of 
mice fed with high fat diet, improves insulin sensitivity 
and signalling[43].

Moreover, overexpression of TLRs on adipocytes 
may also suggest an important role of adipose tissue 
in the regulation of inflammation and innate immunity 
in human beings by modulating TLR/NF-kB regulatory 
pathway. Such observations suggest a modulatory role 
of TLRs in the interaction between the pathways of 
inflammation and metabolism[43]. The above- discussed 
roles of TLRs in genesis of obesity, reduction of insulin 
signalling and sensitivity, and modulation of the interacting 
pathways of inflammation and metabolism appear to 
support the correlation between obesity and T2DM.

CONCLUSION
From the discussions made so far, it may be observed 
that results obtained from extensive research work on 
the factors supposed to link obesity with T2DM, very 
clearly show an intimate relationship between the two, 
for which both adipocytokines as well as some factors 
not derived from adipocytes have been implicated. Of 
them, few (Adiponectin, Leptin, PPAR, Carnitine, Apelin 
and Calcium) are beneficial, while others (TNF-α, IL-6, 
Resistin, RBP-4, DPP-4, PAI-1, Visfatin, FFA, AngⅡ and 
TLR) are harmful, but all of them play a definite role in 
linking obesity with T2DM (mentioned earlier). Among 
these, adiponectin has been found to play a crucial 
and seemingly complicated but definite role. Such 
studies may be extended to all concerned factors giving 
emphasis on mitochondrial and ER stresses. Finally, 
using these agents, drugs may be designed which 
will be helpful to prevent the development of obesity, 
thereby producing a beneficial response in prevention, 
progression and treatment of T2DM. 
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