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Abstract
Progression of normal glucose tolerance (NGT) to 
overt diabetes is mediated by a transition state called 
impaired glucose tolerance (IGT). Beta cell dysfunction 

and insulin resistance are the main defects in type 2 
diabetes mellitus (type 2 DM) and even normoglycemic 
IGT patients manifest these defects. Beta cell dysfunction 
and insulin resistance also contribute to the progression 
of IGT to type 2 DM. Improving insulin sensitivity and/or 
preserving functions of beta-cells can be a rational way 
to normalize the GT and to control transition of IGT to 
type 2 DM. Loosing weight, for example, improves whole 
body insulin sensitivity and preserves beta-cell function 
and its inhibitory effect on progression of IGT to type 2 
DM had been proven. But interventions aiming weight 
loss usually not applicable in real life. Pharmacotherapy 
is another option to gain better insulin sensitivity and 
to maintain beta-cell function. In this review, two 
potential treatment options (lifestyle modification and 
pharmacologic agents) that limits the IGT-type 2 DM 
conversion in prediabetic subjects are discussed. 

Key words: Prediabetes; Impaired fasting glucose; 
Impared glucose tolerance; Diabetes prevention; Type 2 
diabetes mellitus

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Behavioral changes (dieting plus exercising) 
are effective in preventing impaired glucose tolerance 
(GT)-type 2 diabetes mellitus (type 2 DM) conversion 
as well as impaired fasting glucose (FG) - type 2 DM 
conversion but loosing weight is hard and also difficult 
to maintain. Pharmacological interventions (plus 
dieting and exercising) improving and preserving beta-
cell function and enhancing insulin sensitivity may be 
suitable choices for high-risk IGT patients. Troglitazone 
in Prevention of Diabetes Study, Pioglitazone in 
Prevention of Diabetes Study, Diabetes Reduction 
Assessment with ramipril and rosiglitazone Medication 
Trial, Actos Now for the prevention of diabetes study 
and Diabetes Prevention Program have proven that 
thiazolidinediones obviously prevent the development 
of type 2 DM in IGT subjects as well as IFG subjects. 
In Diabetes Prevention Program and Indian Diabetes 
Prevention Program, metformin slowed down the 
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progression of IGT to type 2 DM, and eventually 
American Diabetes Association Consensus Conference 
Statement proposed metformin usage in high-risk IGT 
individuals. However, the efficacy of pioglitazone and 
rosiglitazone efficacy in preventing IGT progression to 
type 2 DM nearly doubles metformin’s efficacy (31% vs  
72% and 62%, respectively). Rosiglitazone (low dose 
= 2 mg/d) together with metformin (850 mg/d) was 
proven to slow down IGT progression to type 2 DM as 
well as being more tolerable.

Kanat M, DeFronzo RA, Abdul-Ghani MA. Treatment of 
prediabetes. World J Diabetes 2015; 6(12): 1207-1222  Available 
from: URL: http://www.wjgnet.com/1948-9358/full/v6/i12/1207.
htm  DOI: http://dx.doi.org/10.4239/wjd.v6.i12.1207

INTRODUCTION
Impaired glucose tolerance (IGT) (second hour plasma 
glucose level 140-199 mg/dL) was first described in 
1979 as “an intermediate stage in the transition from 
normal glucose tolerance (NGT) to overt type 2 diabetes 
mellitus (type 2 DM)”[1]. Individuals with IGT possess 
higher risk for type 2 DM later in life[2]. ADA-revised 
type 2 DM diagnostic criteria declared a new term called 
impaired fasting glucose (IFG) (glucose level 100-125 
mg/dL) in 1997[3]. IFG is an intermediate stage that GT 
changes from NGT to type 2 DM gradually and defined 
by fasting plasma glucose level. Subjects who have IFG 
are also candidates for developing type 2 DM later. But 
clinical and epidemiologic studies showed that IFG and 
IGT are different sorts of glucose intolerance[4]. Both 
IGT and IFG are called “prediabetes” because of gradual 
progression to type 2 DM. Nearly 70 million prediabetics 
(IGT and/or IFG) live in America. Since prediabetes is so 
prevalent[5], increase mortality, morbidity and healthcare 
costs (annually $245 billion in 2012) it is accepted as 
an important public health problem. Thus, alleviating 
the progression of IGT and/or IFG to type 2 DM is a 
reasonable way to combat with diabetes epidemic and 
to lessen healthcare costs. 

The Diabetes Control and Complications Trial[6], the 
United Kingdom Prospective Diabetes Study (UKPDS)[7,8] 
and the Kumamoto Study[9] showed hyperglycemia 
is a risk factor for macrovascular and especially for 
microvascular complications[10,11]. Latest evidence 
illuminated that strict glycemic control is more effective 
in controlling diabetic vascular complications in new-
onset diabetes patients than in long-standing, poorly-
controlled type 2 DM patients[12,13]. Therefore, in new-
onset type 2 DM, main target must be to achieve 
normoglycemic control[14]. Early detection and effective 
intervention of type 2 DM diminishes long-term 
complications leading morbidity and mortality and 
eventually expected to provide social, medical, and 
economic benefits. Treatment should be initiated in IGT 
period in order to reverse the main pathophysiological 
defects in prediabetes[4,15-18] because this is a hopeful 

way of intervention to prevent hyperglycemia-related 
vascular complication development[15-18].

TYPE 2 DM PATHOGENESIS 
Recent proof favors dual-level emergence of type 2 
DM[19-24] (Figure 1). In individuals tended to progress 
type 2 DM, earliest metabolic abnormality is the 
insulin resistance. When insulin resistance appears, 
beta-cells increase their insulin secretion to maintain 
normoglycemia. Thus, hyperinsulinemia is the main 
sign of insulin resistance. If beta-cells can not overcome 
insulin resistance, GT aggrevates. Eventually, IGT 
appears and followed by overt type 2 DM[22-25].

Thus, IGT individuals’ plasma insulin levels are high but 
their beta-cell function are extremely diminished[22,23,25]. 
Therefore, noticing the difference between insulin 
secretion and beta-cell function is important.

Insulin resistance
The common defect in prediabetes and type 2 DM 
is insulin resistance[26-29] and involves liver[22,23,30], 
muscle[22,23,28,31,32], and adipose tissue[23]. Insulin resis-
tance antecedents the glucose intolerance and type 2 
DM[22,23,33]. NGT offspring of two diabetic parents[34,35] 
and people with IGT[36] are markedly insulin resistant 
and develop hyperinsulinemia in order to compensate 
the pathologic state[14,34,35]. Evience supports that insulin 
resistance may have a genetic component that worsens 
by environmental factors such as sedantary lifestyle and 
gaining weight. Hence, interventions that ameliorate 
insulin resistance and limits the insulin secretory demand 
on beta-cells shown to stop or postpone IGT conversion 
to type 2 DM[37-40].

Impairment of beta-cell function
Insulin resistance is the basic characteristics of IGT while 
deficiency of beta-cell function is the reason of IGT and 
its conversion to type 2 DM[22,23,41]. Thus, interventions 
preserving beta-cell function may be a good idea 
to prevent the generation of type 2 DM. In order to 
estimate IGT progression to type 2 DM oral glucose 
tolerance test (OGTT) can be used and a low plasma 
insulin response is a clue for progression. Especially, 
reduction of insulin secretion in the first phase (0-10 
min later following intravenous glucose challenge) is 
a good indicator for conversion to diabetes[33,36,42,43]. 
The first phase insulin secretion deteriorates gradually 
when the fasting plasma glucose (PG) exceeds 90 
mg/dL and is almost completely lost when the fasting 
PG reaches over 110 mg/dL[22,23,44,45]. As previously 
described, it is crucial to discriminate insulin secretion 
from beta-cell function. Beta-cells respond unit 
glucose increase (ΔG) with unit insulin increase 
(ΔI), and this response is modulated by severity of 
insulin resistance[46]. Pure plasma insulin response 
measurement can lead to confusing about the health 
of beta-cells. The gold standard for the estimation of 
beta-cell function is to calculate insulin secretion/insulin 
resistance (disposition) index (ΔI/ΔG/IR). Both genetic 
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and acquired factors (glucotoxicity[47] lipotoxicity[48], 
incretin deficiency/resistance[49-51]) effect loss of beta-
cell function. Compared to normal glucose tolerant 
individuals, impaired glucose tolerant individuals have 
a 4-6 fold increment in type 2 DM risk[52]. Prospective 
epidemiologic studies reveal that nearly 40% of subjects 
developing type 2 DM at follow-up had normal glucose 
tolerant initially. Beta-cell dysfunction is an optimal 
predictor for 2-h plasma glucose during OGTT in normal 
glucose tolerant individuals[43,52]. Beta-cell dysfunction 
is also an optimal predictor for NGT conversion to IGT 
and thereby to type 2 DM[23,24,52]. Individuals in the 
upper tertile of NGT have lost 50% of their beta-cell 
function, wheras subjects in the upper tertile of IGT 
70%-80% (Figure 2). Individuals in the upper tertile 
of IGT are maximally insulin resistant and decline in 
beta-cell function is about 70%-80%. At this point, 
minimal extra reduction in insulin secretion causes a 
prominent increase in fasting and postprandial blood 
glucose levels. Once overt type 2 DM emerges, beta-cell 
function diminishes progressively[53] despite therapies 
with metformin, sulfonylureas, and insulin to control 
glycemia. Genetics, insulin resistance leading insulin 
secretory demand increment, glucotoxicity, lipotoxicity, 
impaired incretin release/action, amylin accumulation, 
and decreased beta-cell mass are causitive factors in 
the progression of beta-cell dysfunction. Interventions 
in order to postpone or preclude beta-cell failure are 
valuable tools in combatting with the conversion of IGT 
to type 2 DM. 

BETA-CELL FUNCTION AND INSULIN 
RESISTANCE IN IFG AND IGT
IGT or IFG patients, and particularly people possessing 
both IGT and IFG[54,55] carry high risk for type 2 DM[56-58]. 
IGT and IFG are eventually end up with type 2 DM but 

they exhibit different physiological and pathological 
processes and have distinct reflections on atherosclerotic 
cardiovascular disease emergence. In people with IFG 
hepatic insulin resistance is moderate and OGTT-early 
insulin response (0-30 min) is diminished[59]. When 
hyperglycemic clamp and IVGTT techniques were used 
in OGTT, first phase insulin secretion is found to be 
blunted in IFG[60,61] (Figure 3). But, late (60-120 min) 
plasma insulin response is unspoilt and muscle insulin 
sensitivity is near-normal in IFG patients; therefore 
two-hour plasma glucose levels returns to its initial 
fasting PG levels[62-64]. Adversely, people with IGT have 
moderate to severe muscle insulin resistance and 
impaired plasma insulin responses (both early and late 
responses) during oral GT test[63,64]. Even if fasting PG 
is relatively stable, it rises progressively during OGTT 
and not come back to normal levels for a long time 
while two-hour plasma glucose remains well above the 
fasting plasma glucose level. On the other hand, IGT 
and IFG share a characteristic impaired insulin secretion 
pattern in the first phase. However, insulin secretion in 
second-phase is intact in IFG states. Whereas, muscle 
insulin resistance is the dominant factor in IGT, in IFG 
tissue responsible for insulin resistance is that of liver. 
Also, IGT and IFG exhibit distinct characteristics for 
atherosclerotic cardiovascular disease. IGT seems to be 
related with metabolic syndrome and a good indicator of 
cardiovascular disease, while IFG predicts these events 
to a lesser extent[65]. 

DETECTION OF HIGH RISK INDIVIDUAL 
BY HBA1C 
ADA recommends considering HbA1c = 5.7%-6.4% 
level as an instrument to detect future diabetes risk. 
However, no previous study has adopted HbA1c level 
as a screening tool to identify subjects at high risk 
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diabetes is obesity[34,68]. The main reason of type 2 DM 
epidemic confronted during the last two decades may 
be the obesity epidemic itself. Sedantary lifestyle and 
eventually gaining weight triggers insulin resistance 
and force the capacity of beta-cell insulin secretion. On 
the other hand, loosing weight by means of lifestyle 
interventions, pharmacologic therapies or bariatric 
surgery augments insulin sensitivity, decreases beta-cell 
work overload, and gets GT better in IGT states[69-71]. 
Four studies have shown that loosing weight through 
dieting and/or exercising improves insulin sensitivity 
and ameliorates beta-cell function, thus is a good 
way to limit IGT progression to type 2 DM[72-74]. When 
individuals loose the 5% of their body weight, total body 
insulin sensitivity improves by 30%[73] and decrease in 
their IGT to type 2 DM progression nearly by 58%[37]. 

Finnish Diabetes Prevention Study, intervention 
individuals were given special advice to loose weight 
(> 5% of total body weight), to decrease total fat 
consumption (< 30% of total calories) as well as 
saturated fat consumption (< 10% of total fat), to 
increase fiber consumption (15 g for each 1000 kilo-
calories) and to increase physical activity (30 min/
d). These individuals were followed up 3.2 years. 
Cumulative diabetes incidence was 58% lower in the 
intervention individuals compared to controls (HR = 0.4, 
P < 0.001). Individuals in the study were categorized 

(HbA1c = 5.7%-6.5%) and has examined the efficacy 
of interventions to reduce the risk of transition to type 
2 DM. Kanat et al[66] and Færch et al[67] previously have 
demonstrated the concordance of HbA1c vs OGTT in 
high risk individuals and found only little overlap between 
them. Moreover, Kanat et al[66] have shown that HbA1c 
was a poor predictor of impaired beta cell function which 
is the principle factor mediating the process in which 
high risk individuals become overt diabetes. Discussion 
below is about how we should prevent diabetes among 
high risk individuals, namely individuals with IFG/IGT 
identified by OGTT results. 

INTERVENTION TO PREVENT THE 
PROGRESSION OF IGT TO TYPE 2 DM
First step in the progression of NGT to type 2 DM is 
IGT and IFG[22-24,33]. The IGT and IFG shares 2 features 
in common: Beta-cell function impairment and insulin 
resistance. Thereby, it seems logical to assume that 
efforts to preserve or increase functions of beta-cells 
and/or decrease insulin resistance may be a potent way 
to delay the conversion of IGT to DM.

Amelioration of insulin resistance: Loosing weight
The basic risk factor in the progression of IGT to 
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Figure 2  Insulin secretion/insulin resistance (disposition) 
index (defined as change in insulin/change in glucose/insulin 
resistance) in individuals with normal glucose tolerance, impaired 
glucose tolerance, and type 2 diabetes mellitus as a function of 
the 2-h plasma glucose concentration in lean (closed circles) and 
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Figure 3  Plasma glucose concentration during the oral glucose 
tolerance test in normal glucose tolerant (close circles) individuals 
and in subjects with impaired glucose tolerance (closed triangles) 
and impaired fasting glucose (open circles).
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considering whether they succeeded their initial targets 
at one year of assessment (Figure 4). Reciprocal 
relationship was determined between achievement score 
and new diabetes cases. If an individual succeeded 4-5 
goals, diabetes did not develop[72]. Another landmark 
clinical trial [Dipeptidyl peptidase (DPP)] assigned 3234 
prediabetic patients (IFG + IGT) to placebo, metfomin 
(2 × 850 mg per day), or a lifestyle modification 
program. In this program targets are loosing 7% of 
body weight, taking 150 min-physical exercise every 
week and reducing (25% of total calories) total intake of 
fat. Individuals were followed up to 2.8 years. Lifestyle 
modifications (compared to placebo) decreased the new 
diabetes cases by 58%. Hovewer, in subjects who lost 
weight and who met physical exercise/dieting targets, 
risk of diabetes decreased > 90%. These results are 
consistent with the Finnish Diabetes Prevention Study in 
which participants met four or five of their goals. In post-
hoc analyses of both studies, weight loss was the most 
important contributor to type 2 DM prevention. In the 
DPP trial, a 5-kg weight loss over time could account for 
the 55% reduction in the risk of diabetes over the mean 
of 3.2 years of follow-up in this high-risk population[37].

Isolated IFG and isolated IGT individuals carry nearly 
the same risk about the progression of IFG to type 2 
DM, but there is no major clinical trial assessing the 
lifestyle intervention efficacy on preventing IFG - type 
2 DM conversion. A small study[75] in Japanese subjects 
with IFG has reported that an intensive weight loss 
program is more effective in reducing the conversion 
rate from IFG to type 2 DM compared to less intensive 
intervention (HR = 0.56, 95%CI: 0.36-0.87). Subgroup 
analysis revealed that subjects who had IFG + IGT at 
baseline manifested greater reduction in the conversion 
to type 2 DM (HR = 0.41, 95%CI: 0.24-0.69) while it 

was not statistically significant in subjects with isolated 
IFG (HR = 1.17, 95%CI: 0.50-2.74). A significant 
difference achieved by lifestyle intervention on diabetes 
conversion between two groups (P = 0.03). 

Lifestyle intervention is the most effective approach 
to combat with progression of IGT to type 2 DM, 
but preserving the final weight and exercising is 
unsustainable[76]; for example, when DPP trial ended, 
people gained weight again[77] (Figure 5). Weight loss 
achieved by drugs is also a good way to diminish 
conversion of IGT to type 2 DM. Orlistat brings 5.8 kg 
loss while lifestyle changes brings 3.0 kg loss, while IGT 
- type 2 DM conversion limited by orlistat was about 
a 37% in XENDOS study[78]. But, when placebo was 
given instead of the drug, individuals gained weight 
again although they continued their diets so weight 
loss provided by pharmacologic interventions is also 
unsustainable[79]. Typically, most weight loss programs 
resulted in weight regain no matter what intervention 
type (lifestyle or pharmacologic) was used and when 
loosing weight programme stopped, IGT - type 2 DM 
progression rate mimics control individuals[80]. Thus, 
we can conclude that “legacy” effect via weight loss 
is not much in terms of slowing down the IGT - type 
2 DM progression. In real-life, even maintaining 5% 
weight loss is unrealistic. In a study performed in 
Finland community[81] a diabetes prevention program 
aiming 5%-7% weight loss applied 10149 registered 
subjects and 1/3 of these subjects lost more than 2.5% 
of their body weight. Moreover, in case of achievement 
of sustainable weight loss, diabetes incidence decrease 
was about 50%-60%. In other words, IGT - type 2 
DM progression continued in 40% to 50% of subjects 
although they lost weight successfully. Therefore, 
changes in lifestyle are insufficient in preventing 
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diabetes in prediabetic people. But opposite to 
behavioral interventions such as dieting and exercising, 
pharmacological interventions always limits IGT or IFG 
progression to type 2 DM.

Correction of insulin resistance: Pharmacotherapies
Lifestyle intervention is impractical and not satisfactory 
for insulin sensitivity improvement, pharmacologic 
agents used as an alternative way of enhancing insulin 
impact and limiting IGT - type 2 DM progression. In 
some clinical studies, pharmacotherapy getting insulin 
sensitivity better in adipocytes, in muscle-cells or liver-
cells have found to diminish conversion of IGT - type 2 
DM. 

Metformin: Fasting PG concentration and hemoglobin 
A1c can be decreased by metformin in type 2 DM 
through inhibition of liver glucose production[82-84] or 
through preserving beta-cell function[85]. However, in 
some studies including UKPDS and ADOPT, it is shown 
that hemoglobin A1c decreases first and then rises 
again gradually[7,8,85,86]. In DPP study, IGT conversion to 
type 2 DM by 31% when metformin was given at the 
dose of 1700 mg/d; also this therapy corrected insulin 
sensitivity and diminishes new metabolic syndrome 
cases. Again, metformin in Indian Diabetes Prevention 
Program limits the IGT - type 2 DM progression[87]. 
Other minor studies[88-90] show that metformin lowers 
the plasma glucose concentration in obese adolescents. 
However, there is no study investigating the efficacy 
of metformin on diminishing the conversion rate of 
IFG to type 2 DM. It is proven that metformin and 
weight loss has similar effectiveness on decreasing 
the progression of IGT to type 2 DM in younger than 
65-year-old subjects, subjects with body mass index 
over 35 and subjects whose fasting plasma glucose 
exceeding 110 mg/dL[37]. Thus, it is not unusual to claim 
that metformin would significantly lower the conversion 
rate from IFG to type 2 DM. A prospective randomized 
clinical trial illuminated the answer. Eventually, American 
Diabetes Association advices metformin useage in high-
risk individuals (younger than 60-year-old, body mass 

index over 30 kg/m2 and HbA1c over 6.0%) with IGT 
or IFG, taking into account that metformin has been 
known as a safe generic drug[91]. However, similar 
to sulfonylureas, metformin cannot stop beta-cell 
failure which is crucial for type 2 DM. While metformin 
response initially seems good, HbA1c begins to rise 
eventually. 

Thiazolidinediones: Thiazolidinediones act on “peroxi-
some proliferator activator receptor gamma” (PPAR-γ) 
and eventually improve two main defects generated 
by IGT. Thiazolidinediones bring adipocytes as well as 
liver and muscle cells sensitivity to insulin[92-94] and also 
support and protect beta-cells function[95]. Hypothesis 
that defends “thiazolidinediones improve muscle insulin 
sensitivity by reducing plasma free fatty acid levels and 
intramyocellular lipid content, and redistributing fat from 
visceral to subcutaneous adipose depots” finds lots of 
evidence. Moreover, muscle and fat cell PPAR-γ receptors 
mediates insulin-sensitizing effect directly[92-94]. There 
is no significant difference between troglitazone[96], 
pioglitazone[97], and rosiglitazone[98] in controlling 
glycemia and increasing insulin sensitivity in type 2 DM. 
Troglitazone increase GT and insulin sensitivity as well 
as limits type 2 DM conversion in IGT individuals[38,99,100] 
and in women developing diabetes during their 
pregnancies[101]. In Diabetes Prevention Program, IGT - 
type 2 DM progression reduced by 23% by troglitazone 
within three years, even if the drug was stopped after 
10 mo[38]. After 1.5 years of follow-up diabetes incidence 
was markedly reduced for every 100 person-treatment 
years in IGT subjects taking troglitazone compared with 
placebo (3.0 vs 12.0 cases; P < 0.001), compared with 
metformin (3.0 vs 6.7 cases; P = 0.02) and compared 
with lifestyle changing activities (3.0 vs 5.1, P = 0.18) 
(Figure 6). IGT - type 2 DM conversion decrease 
attributed to rosiglitazone was 62% in DREAM trial[39] 
and best indicator of diabetes prevention was recovery 
in insulin secretion/insulin resistance index. Pioglitazone 
and troglitazone slows down IGT progression to type 2 
DM in women with gestational diabetes history[101-103]. 
In Actos Now for the prevention of diabetes study, IGT - 
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type 2 DM conversion rate fall attributed to pioglitazone 
was 72% (P < 0.00001)[40].

Beta-cell function sustainability
Because IGT - type 2 DM conversion and appearance 
of hyperglycemia led by gradual beta-cell failure, 
improving beta-cell function in IGT individuals are 
expected to be useful in lowering the new cases of 
type 2 DM. Although thiazolidinediones strikingly 
increase insulin sensitivity in IGT individuals, the best 
indicator of type 2 DM prevention is reinforcing beta-
cell function. In diabetic human trials[101,103] and animal 
studies[104] troglitazone[99-101], pioglitazone[95,97,102], 
and rosiglitazone[95,98] increased the function of beta-
cells by: (1) unloading beta-cells via advancing insulin 
sensitivity; (2) decreasing plasma free fatty acid levels; 
(3) correcting lipotoxicity; in other words sending 
toxic lipid metabolites (diacylglycerol, ceramides 
and fatty acyl CoAs) away from beta-cells; and (4) 
exerting direct PPAR-γ receptor-mediated beta-cell 
effect[48,94,95]. Thiazolidinediones both advance insulin 
sensitivity and protect beta-cell function so that 
they blocks IGT - type 2 DM conversion and create 
a longstanding HbA1c decrement in type 2 DM[23]. 
Nevertheless, thiazolidinediones induce fluid retention 
plus fat weight gain and they have the disadvantage 
of being expensive[39,105]. For that reason, American 
Diabetes Association decleared metformin instead of 
thiazolidinediones for treatment of IGT or IFG[91] even 
if thiazolidinediones doubles the effect of metformin in 
preventing IGT - type 2 DM conversion[105,106] (Figure 
6). In Actos Now for the prevention of diabetes study 
titrated pioglitazone dose was 45 mg per day. But, even 
15 to 30 mg daily pioglitazone dose increased insulin 
secretion and sensitivity in type 2 DM[107] while causing 
lesser fluid retention and lesser fat gain[108]. Also, 
Canadian individuals with IGT were given 2 mg per day 
rosiglitazone plus 1000 mg per day metformin, and IGT 
- type 2 DM conversion reduction with this regimen was 
about 71% with no significant fluid retention and weight 
gain[109].

In all of the 8 studies continued over 1.5 years, 
thiazolidinediones reduced HbA1c levels and maintained 
this decrement in type 2 DM subjects. In ADOPT, 
5-year rosiglitazone-associated HbA1c decrease was 
obtained[86]. Sustained reduction in HbA1c implicates 
that thiazolidinediones are long-acting drugs on beta-cell 
functionality. Parallely, in another study, insulin secretion/
insulin resistance index which is the gold standart in the 
measurement of beta-cell function is calculated in 61 
type 2 DM subjects and functions of beta-cells improved 
by rosiglitazone and pioglitazone in a similar way[95]. 
Consequently, thiazolidinediones protect and augment 
beta-cell function, sensitize insulin as well as preserve 
long standing HbA1c reduction and delay IGT- type 2 
DM progression. 

Glucagon-like peptide-1 analogues: Oral glucose 
consumption provides 2-3-fold greater plasma insulin 

response compared to same level of hyperglycemia 
enhanced by intravenous glucose and this is called 
“incretin effect”[110-112]. Ninety percent of incretin effect 
derived from L cell-associated glucagon-like peptide-1 
(GLP-1) release and K cell-associted GIP release. GIP 
and GLP-1 are strong stimuli for insulin secretion. 
GLP-1 also blocks secretion of glucagon, postpones 
emptying of stomach, diminishes appetite, limits food 
consumption and potentiates loosing weight. Dipeptidyl 
peptidase-IV cleaves GLP-1 and GIP rapidly within one 
or two minutes, those peptides are not suitable for 
therapy of type 2 DM and/or IGT individuals. GLP-1 
receptor agonists (namely liraglutide and exenatide) 
mimicing GLP-1 actions are resistant to degenarating 
effect of dipeptidyl peptidase-IV[113,114]. Like endogenous 
GLP-1, liraglutide and exenatide are powerful insulin 
secretagogues, and they decrease secretion of glucagon, 
potentiate loosing weight and effectively decrease 
plasma glucose levels in type 2 DM. A three-year 
prospective study showed exenatide reduced HbA1c 
for a long time, augmented functions of beta-cells 
and provided gradual weight loss[115]. One favorable 
aspect of GLP-1 analogues is that hypoglycemia is 
uncommon during therapy because GLP-1 analogues 
merely increase secretion of insulin whenever there is 
hyperglycemia. Glucose physiologically triggers release 
of insulin. Glucose increases the ATP generation, 
eventually generated ATPs close the potassium channels. 
Consequently, membrane of beta-cells are depolarized, 
calcium influx occurs and exocytosis begins in insulin-
containing vesicles[116]. Eventually, glucose mediates 
insulin secretion. But effect of GIP and GLP-1 on beta-
cells are totally independent from hyperglycemia. After 
they bind self receptors, adenylate cyclase is activated, 
ATP is converted to cAMP so they “amplifies” insulin 
secretion by means of hyperglycemia. If hyperglycemia 
does not exist, GLP-1 or GIP can not augment secretion 
of insulin[117].

The typical signs in subjects with IGT and type 2 
DM are severe decrease in functions of beta-cells and 
obvious decrease in incretin effect after meal or after 
glucose consumption[110-112]. Studies have pointed out 
that in IGT and type 2 DM cases the main defect is the 
incapability of beta-cells to respond glucose. Incretin 
hormones partially overcome beta-cell “blindness” 
to glucose[118]. In IGT cases GLP-1 response after 
meal usually is not changed or slight impairment is 
observed[119-121] while GLP-1 response in the first 10 
min is usually lessened (this implicates phasic defect in 
GLP-1 secretion) but GIP secretion is mildly elevated[122]. 
On the contrary, in type 2 DM beta-cells are resistant 
to GLP-1-mediated insulin secretion[123]. Also, beta-
cells are resistant to GIP-mediated stimulation of insulin 
secretion. If insulin is given and glycemia reverted 
to normal, susceptibility of beta-cells to GIP can be 
improved, but this is not true for GLP-1[50].

If hyperglycemia exists, NGT individuals give 
powerful insulin secretion response against the 
GLP-1 increase. Inversely, in type 2 DM the same 
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GLP-1 amount cannot increase insulin secretion even 
hyperglycemia exists[50,51]. But whenever plasma GLP-1 
levels increased pharmacologically, insulin response 
becomes normal in hyperglycemic states (Figure 7). 
Hence, pharmacological plasma GLP-1 levels may 
restore “beta-cell glucose blindness” in IGT and type 
2 DM. Although GLP-1-analogue-mediated beta cell 
stimulation is only sustainable during wash-out period, 
a novel trial declared that 3-year exenatide therapy 
partially recovered responsiveness of beta-cell to 
glucose[124].

Conversion of NGT to IGT and eventually to type 2 
DM is mediated by nonstop failure of beta-cells (Figures 
1 and 2). Exenatide: (1) increases responsiveness of 
beta cells to glucose and augments functions of beta-
cells in type 2 DM; (2) facilitates loosing weight; (3) 
does not induce hypoglycemia; and (4) is applied once 
a week (Bydureon). For that reason, exenatide could 
be a good choice to decrease the conversion of IFG/
IGT to type 2 DM and to a guarantee for NGT. There 
is no study investigating GLP-1 analogue effect on IGT 
- type 2 DM conversion. On the other hand liraglutide 
was investigated in obese but nondiabetic individuals 
(31% had IGT)[125]. In these IGT individuals, 84%-96% 
decrement was observed in type 2 DM progression. 
Five percent weight loss was achieved in 61% of 
individuals while ten percent weight loss achieved in 
19% of individuals. New metabolic syndrome cases was 
decreased up to 60%. Therefore, long-acting GLP-1 
analogues could be preferable drugs in order to prevent 
conversion of IGT to type 2 DM, because they carry 
additional effects such as weekly administration, beta 
cell function augmentation, and facilitation of loosing 
weight[126].

DPP-IV inhibitors: DPP-IV is the enzyme that cleaves 
GLP-1; DPP-IV inhibitors block this enzyme and there-
fore rise plasma GLP-1 concentrations. But, DPP-IV 
inhibitor-related increase in GLP-1 concentrations is 
uniquely dependent on endogenous GLP-1 secretion. 
Thus, DPP-IV inhibitor-related plasma GLP-1 rise 
usually is lower than GLP-1 analogue-related rise. DPP-
IV inhibitors accomplish moderate increase in insulin 
secretion and have moderate inhibition on glucagon[110]. 
Vildagliptin administration in IGT individuals reveals little 
augmentation on functionality of beta-cells. However, 

vildagliptin effect totally disappeared after washout[116]. 
There is no study calculating DPP-IV inhibitor-mediated 
conversion rate of impiared GT - type 2 DM switch. In 
contrary to GLP-1 analogues, DPP-IV inhibitors cannot 
help loosing weight and they exert insufficient effect 
on beta-cells. Accordingly, GLP-1 analogues may be 
superior to DPP-IV inhibitors in IGT treatment. 

Alpha-glucosidase inhibitors: IGT-type 2 DM 
conversion rate decreased about 25% by acarbose[127] 
and voglibose[128]. This effect was attributed to inhibition 
of carbohydrate absorption but increment in incretin 
secretion induced by alpha-glucosidase inhibitors 
may be the real reason of positive impact on glucose 
homeostasis[129]. Alpha-glucosidase inhibitors changes 
microbial flora of gut, thus they may help to heal 
glucose intolerance[130].

Pharmacotherapy cessation and emergence of 
diabetes: Pharmacological therapy applied to increase 
insulin sensitivity and beta-cell function have potent 
impact on prediabetes-diabetes conversion. But, we are 
not sure whether this effect is transient or sustained 
when the intervention is discontinued. Pharmacologic 
interventions prevents or delays diabetes onset by: (1) 
masking diabetes appearance by suppressing glucose; 
(2) preventing or delaying diabetes development only 
while it is being used; or (3) retaining their effects even 
after withdrawal.

Reassessing glycemic status after washing out 
the pharmacotherapy could clarify which possibility is 
relevant for the intervention[131]. Several studies investi-
gating wash out effect are conducted in order to answer 
these questions. After 2.8 years of intervention in DPP 
trial, the incidence of diabetes in individuals with IGT 
was reduced by 58% with lifestyle modifications while 
the reduction is only 31% with metformin therapy 
compared with placebo. At the end of the trial 11-d 
washout period applied, participants who were taking 
metformin or placebo and had not developed diabetes 
were tested with a repeat OGTT in order to assess 
whether the observed metformin effect was sustained 
after cessation of the drug. Washout control reveals 
metformin participants had a significant increase in 
fasting glucose levels. It is concluded that one-quarter 
of the beneficial effect of metformin to prevent type 2 
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DM was attributable to a pharmacological effect and 
this effect did not persist when the drug was withdrawn. 
However, the overall effect of metformin in preventing 
diabetes remained substantial at 25% after withdrawal 
of the intervention[132].

In DREAM trial rosiglitazone slows down the new-
onset diabetes in people with IGT ± IFG significantly (HR 
= 0.40, P < 0.0001). After a median 71-d medication 
washout period, the incidence of diabetes is similar 
both in intervention and placebo groups. This evidence 
suggests rosiglitazone does not have a sustained effect 
on the underlying disease pathophysiology and effective 
as long as the therapy is being given[131].

In STOP-NIDDM trial acarbose given to IGT 
patients delayed progression to Type 2 DM. The risk of 
progression to diabetes over 3.3 years was reduced by 
25%. In the last 3 mo of the study placebo was given to 
all subjects. During this placebo treatment period, the 
incidence of diabetes was higher in the group originally 
assigned to acarbose than in the group first randomized 
to placebo (HR = 0.45, P < 0.005). On the other 
hand, STOP-NIDDM trial demonstrated that beneficial 
effect of acarbose preventing type 2 DM was partially 
attributable to its pharmacological effect and similar to 
metformin, the effect is not sustainable when drug use 
is stopped.

DETECTION OF HIGH RISK PERSONS FOR 
PHARMACOLOGICAL INTERVENTION
Prediabetics prone to develop type 2 DM plus athero-
sclerosis-induced cardiovascular complications are 
usually sub-maximally insulin resistant. In addition, 
these individuals have lost two thirds of their beta cell 
functions, their HbA1c levels usually are around 6% and 
at least 10% have diabetic retinopathy[133,134], nearly 
the same percentage of individuals have peripheral 
neuropathy[135]. Characteristic primers of diabetes 
are beta-cell dysfunction and insulin resistance. Gold 
standard measurement method for insulin sensitivity 

is euglycemic insulin clamp technique while the gold 
standart measurement method for insulin secretion 
is hyperglycemic clamp technique. These techniques 
are not much applicable for screening in clinical 
practice. Other predictive models studied IGT - type 
2 DM conversion[136] and it is concluded that neither 
anthropometric criteria (waist-to-hip ratio or body 
mass index) nor metabolic syndrome components are 
superior to two-hour plasma glucose of OGTT. Another 
study illuminated two subgroups carrying high type 2 
DM risk: First group consisted of IGT individuals whose 
total plasma glucose is in the upper fifth percentile 
during OGTT while the second group consisted of fasting 
plasma glucose over 95 mg/dL[137]. Best predictive 
criterion for future type 2 DM in IGT subjects is one-hour 
plasma glucose over 155 mg/dL, independent of their GT 
status in the Botnia[54] and San Antonio Heart[138] studies. 
Some biomarkers such as fasting PG, ferritin, insulin, 
adiponectin, HbA1c, IL-2 receptor A, high-sensitivity 
C-reactive protein predict diabetes development in later 
life[139]. Actos Now for the prevention of diabetes study 
and Diabetes Prevention Program gives inspiration to 
select IGT subjects carrying extra risks for type 2 DM, in 
order to discriminate people that take advantage from 
pharmacotherapy.

PREDIABETIC PATIENT ALGORYTHYM
The optimal strategy is to prevent development of 
hyperglycemia intervening at the stage of IGT and also 
to revert GT back to normal. Individuals with IGT are 
insulin resistant and lost 50%-80% of their beta-cell 
function. Also, in order to prevent vascular complications 
resumption of normoglycemia is crucial in type 2 DM. 
This algorithm is also cheaper in long run. Diabetes 
Prevention Program Research Group wrote “Over 3 
years, metformin was clinically effective (in preventing 
diabetes in IGT subjects) and cost-effective from the 
perspective of a health system and society, especially 
if implemented with generic medication pricing”[140,141]. 
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When model simulations performed, similar results were 
reached[142,143]. IGT - type 2 DM conversion blockage by 
pioglitazone[40] is two fold that of metformin[37], so it is 
logical to assume that pioglitazone also could be cost-
effective. But, monitoring and side effect treatment 
costs of those drugs should be remembered. Two 
aspects should be taken into account while performing 
cost analysis of pioglitazone. First one is edema 
management (if occurs) and the second is monitoring 
and treating osteoporosis. Possible long bone fracture 
in postmenopausal women should also be evaluated 
in cost analysis. Some studies implies bladder cancer 
risk in individuals who are given 45 mg pioglitazone 
over two-year time. But FDA mandated a prospective 
study in order to clear the pioglitazone safety (Kaiser 
Permanente study) as after eight-year observation, 
in comparison to those who never used pioglitazone, 
hazard risk ratio of bladder cancer was 0.98 in diabetics 
receiving pioglitazone.

GLP-1 analogues are expensive and they may not 
be put on market in near future. For that reason, cost 
analysis of GLP-1 analogue use in prediabetes states 
should be done cautiously. From community perspective, 
different criteria are considered in drug usage. But 
from patient perspective any solution to postpone or 
avert hyperglycemia probably decreases new onset 
microvascular complications such as nephropathy, 
neuropathy and/or retinopathy. When the main argument 
is reducing new cases of blindness, amputations and/or 
end-stage renal disease, “cost” cannot be top criterion 
for the individual for ethical reasons. 

Another option is to prefer waiting till diabetes 
emerges and initiate therapy at this stage rather than 
treating individuals with prediabetes. But there is several 
limitations for this option. First, it brings handicaps 
on detecting exact timing of diabetes onset, namely, 
prediabetic individuals should be regularly controlled 
during this period. Secondly, UKPDS results make us 
to realize that in initial stages of diabetes tight glucose 
control cannot prevent microvascular complications. 
Besides, progression of euglycemia to dysglycemia is 
a silent but secular process. Thus, defining diabetes 
initiation in the basis of plasma glucose (namely fasting 
plasma glucose or two-hour plasma glucose) levels or 
in the basis of HbA1c is controversial. In reality, one 
tenth of prediabetics already have evidence of diabetic 
microvascular complications. Thirdly, upper tertile of 
IGT group is insulin resistant, their beta cell function 
loss is nearly 70%-80% whereas volume loss is about 
30%-40%. Fourthly, a major diminution in beta-cell 
mass in prediabetes accelerates the conversion process 
to type 2 DM[144]. There is no remedy to increase human 
beta cell mass, today.

All pathophysiological events observed in type 2 DM 
also appears in prediabetic individuals and nearly 10% 
of prediabetics exhibit microvascular complications. 
Consequently, initiating lifestyle changes and pharma-
cotherapy in high-risk prediabetics instead of waiting 
till diabetes emerges seems reasonable. However 

there is no study comparing prediabetic stage therapy 
vs the diabetic stage therapy. Because these studies 
necessitate large sample sizes and very long study 
periods in order to demonstrate incidence differences 
in terms of microvascular complications. Therefore, 
response to the question “when should we institute 
pharmacological therapy?” is unclear, yet.

Lastly, prediabetics carry high risk for cardiovascular 
complications (myocardial infarction, stroke, cardio-
vascular death) besides their type 2 DM risk. IGT 
individuals are highly insulin resistant and thereby, 
exhibit some typical metabolic abnormalities observed 
in insulin resistance. For example they become dysg-
lycemic, dyslipidemic, hypertensive, obese, insulin 
resistant, prone to coagulation, vulnerable to inflam-
mation and endothelial dysfunction. Those abnormalities 
are also the main risk factors for cardiovascular disease. 
Moreover, insulin resistance is an independent athero-
sclerotic risk factor irrespective of other associated 
risk factors[94]. Thus cardiovascular disease risk of 
prediabetics is much more compared to normal indivi-
duals. Some measures diminishing diabetes risk also 
reduce cardiovascular risk. For instance, pioglitazone 
decreases triglyceride concentrations and increases HDL 
levels while loosing weight decreases blood pressure 
and heals lipid profile[37]. Eventually, in order to decrease 
cardiovascular disease risk of these individuals one 
should apply measures diminishing type 2 DM risk on 
one hand, while giving special attention on treating CVD 
risk factors (blood pressure and dyslipidemia) on the 
other hand. 

“Diabetes prevention” or “reversal of prediabetes to 
normoglycemia”?
Restoration of normoglycemia in prediabetics obviously 
lessens diabetes risk. Diabetes Prevention Program 
Outcome Study (DPPOS) compared the 894 people who 
had at least one normal OGTT with the 1096 people 
who never regressed to normoglycemia in Diabetes 
Prevention Program. In follow-up period of the study 
relative risk of diabetes emergence was 56% lower in 
the first group (OR = 0.44)[145]. Regression from predia-
betes to normoglycemia not only reduces the risk of 
diabetes, but also the risk of cardiovascular disease. 
DPPOS has proven that if prediabetes can regress to 
normal glucose state, cardiovascular complications 
decrease[146]. Because, nearly one tenth of prediabetics 
possess microvascular complications, it is likely that 
restoration of normoglycemia improves microvascular 
complications[147].

SUMMARY
Behavioral changes (dieting plus exercising) are effective 
in preventing IGT-type 2 DM conversion as well as IFG - 
type 2 DM conversion but loosing weight is hard and also 
difficult to maintain. Pharmacological interventions (plus 
dieting and exercising) improving and preserving beta-
cell function and enhancing insulin sensitivity may be 
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suitable choices for high-risk IGT patients. Troglitazone in 
Prevention of Diabetes Study, Pioglitazone in Prevention 
of Diabetes Study, Diabetes Reduction Assessment 
with ramipril and rosiglitazone Medication Trial, Actos 
Now for the prevention of diabetes study and Diabetes 
Prevention Program proven that thiazolidinediones 
obviously prevent the development of type 2 DM in IGT 
subjects as well as IFG subjects (Table 1). In Diabetes 
Prevention Program and Indian Diabetes Prevention 
Program, metformin slowed down the progression 
of IGT to type 2 DM, eventually ADA Consensus 
Conference Statement proposed metformin usage in 
high-risk IGT individuals. However, pioglitazone and 
rosiglitazone efficacy in preventing IGT progression to 
type 2 DM nearly doubles metformin’s efficacy (31% vs 
72% and 62%, respectively). Rosiglitazone (low dose 
= 2 mg/d) together with metformin (850 mg/d) was 
proven to be slows down IGT progression to type 2 DM 
as well as to be more tolerable. GLP-1 analogues: (1) 
effectively treats type 2 DM; (2) blocks IGT - type 2 DM 
progression; (3) preserves and augments functions of 
beta-cells; (4) facilitates loosing weight; (5) combat with 
cardiovascular risks; (6) do not cause hypoglycemia; 
and (7) can be used once a day (liraglutide) or once a 
week (Bydureon). For these reasons we speculate that 
this drug group, especially long-acting preperations[127], 
be ideal for obese patients with IGT. 

The benefits and disadvantages of pharmacotherapy 
must be evaluated simultaneously. Although rare, met-
formin can induce lactic acidosis. If serum creatinine 
levels exceeds 1.4 mg/dL in females and 1.5 mg/dL in 
males, metformin is contraindicated. Gastrointestinal 
side effects are often and one tenth of patients are 
metformin intolerable. On the other hand, pioglitazone 
users experience fluid retention, fat weight gain and 
congestive heart failure. Paradoxically, while fat weight 

gain increses, reduction in HbA1c becomes more pre-
valent and much more insulin sensitivity/beta-cell 
function improvement is achieved. Easily detected clinical 
sign of fluid retention is peripheral edema and can be 
controlled easily with distally acting diuretics such as 
amiloride or spironolactone. Because these side effects 
are dose-related, restricting pioglitazone to 30 mg daily 
dose may decrease side effects. Trauma-related fracture 
cases were increased in postmenopausal women treated 
with pioglitazone. For that reason pioglitazone should 
be used carefully in postmenopausal women. Nausea/
vomiting are main handicaps of GLP-1 receptor agonist 
usage; nearly one third of subjects experience nausea/
vomitting. Though adverse effects are generally mild or 
temporary, liraglutide/exenatide intolerance is about 5%. 
Pancreatitis is also pronounced, but when large national 
databases were analysed retrospectively, there was no 
such increment in pancreatitis in GLP-1 receptor agonist 
users. 

CONCLUSION
In conclusion, we recommend strict lifestyle modifi-
cation for patients with IGT ± IFG. Another option is to 
initiate pharmacotherapy with metformin plus low-dose 
pioglitazone. In high risk IGT individuals long-acting 
GLP-1 analogue use as well as diet plus exercise may 
be another option. Each component of this approach 
is effective in type 2 DM prevention and turning IGT 
back to normal. Depending on evidence described 
earlier, we believe “combination therapy” would 
especially be preventive for microvascular complications 
and is associated with lower adverse effects. Also, 
pharmacotherapy with generic drugs may be cost 
effective.
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Abstract
Diabetes mellitus (DM), a metabolic disorder is a major 
orchestra influencing brain and behavioral responses via  
direct or indirect mechanisms. Many lines of evidence 
suggest that diabetic patients apparently face severe 
brain complications, but the story is far from being 
fully understood. Type 2 diabetes, an ever increasing 
epidemic and its chronic brain complications are 
implicated in the development of Alzheimer’s disease 
(AD). Evidences from clinical and experimental studies 

suggest that insulin draws a clear trajectory from 
the peripheral system to the central nervous system. 
This review is a spot light on striking pathological, bio
chemical, molecular and behavioral commonalities of 
AD and DM. Incidence of cognitive decline in diabetic 
patients and diabetic symptoms in AD patients has 
brought the concept of brain diabetes to attention. 
Brain diabetes reflects insulin resistant brain state 
with oxidative stress, cognitive impairment, activation 
of various inflammatory cascade and mitochondrial 
vulnerability as a shared footprint of AD and DM. It has 
become extremely important for the investigators to 
understand the pathophysiology of brain complications 
in diabetes and put intensive pursuits for therapeutic 
interventions. Although, decades of research have 
yielded a range of molecules with potential beneficial 
effects, but they are yet to meet the expectations. 

Key words: Diabetes mellitus; Alzheimer’s disease; 
Insulin; Type 2 diabetes; Type 3 diabetes

© The Author(s) 2015. Published by Baishideng Publishing 
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Core tip: This review provides a synopsis in which a 
metabolic disturbance becomes indispensible for life 
and emerges as a molecular signal defect leading to 
a syndrome with multiple complications. Insulin is a 
spotlight player which draws a trajectory from diabetes 
to Alzheimer’s disease with multiple divergence and 
convergence. We have discussed their interplay to 
speculate their shared molecular footprints. These 
biochemical and molecular commonalities provide a clue to 
the investigators to look inside a therapy with a common 
experimental and clinical platform and also provide an 
insight for  new interventions as future perspective to find 
a potential stone to kill two birds together. 
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INTRODUCTION
Every human cell relies on a complex set of programs 
installed during ontogeny. These programs and 
commands over them are the two interfaces which 
need faultless execution for normal body physiology. 
Physiology, behavior and defense are three eventful 
networks, which are supposed to function in synchro
nicity. A defect in any of these three events alters rest of 
two without any delay. Diabetes is a complex disorder 
where a molecular compromise alters the physiology 
with significant changes in behavioral responses. 

Diabetes is associated with the production of 
autoantibodies against pancreatic βcells, i.e., type 
1 diabetes (T1D) or with insulin resistance (IR), i.e., 
T2D[1,2]. T1D is a chronic hyperglycemic condition 
which affects multiple systems like brain, heart, eyes 
and kidneys[3]. Diabetes is found to be one of the 
causes of brain atrophy, mild cognitive impairment 
and white matter abnormalities[46]. In T2D insulin fails 
to stimulate utilization of glucose which gives rise to 
a phenomenon called IR. Chronic IR leads to several 
other complications such as lack of cellular energy, 
increased plasma lipids, cardiovascular problems 
and hypertension[711]. Increased risk of developing 
dementia and Alzheimer’s disease (AD) was suggested 
in T2D, which was further supported by clinical and 
epidemiological studies[12,13]. Diabetes patients have 
two fold higher risk of AD as compare to nondiabetic 
patients[12]. In central nervous system (CNS), presence 
and distribution of insulin, insulin receptors (IRs) 
and its substrate are region specific[14,15]. Insulin is 
found to play important role in learning and memory 
by regulating the release of neurotransmitters and 
synaptic plasticity[16]. It is inferred from the literature 
that defective insulin signaling in diabetic patients plays 
a crucial role in synaptic physiology[1719]. Many other 
molecules participating in insulin signaling pathway have 
been reported to be crucial for normal physiology[20]. 
Remarkable presence of IRs in different brain areas has 
provided a clue of possible link between insulin signaling 
and synaptic plasticity. This fact is strongly supported by 
upregulation of IRs in hippocampus after training for 
spatial memory task via MorrisWater Maze[21].

In 1998, a possible link between insulin dysfunction 
and AD was established[22,23]. The postmortem AD 
brains showed reduced insulin like growth factor 
(IGF) mRNA levels and its receptor as compared to 
controls[24]. Impaired peripheral glucose sensitivity[25] 
and elevated plasma and cerebrospinal fluid (CSF) 
levels of insulin[2628] were also reported in AD patients. 
Thus, there are consistent reports showing involvement 
of impaired insulin signaling in cognitive decline in 
AD patients. The role of insulin in enhancing memory 
performance in AD patients was confirmed by rescuing 

effect of intravenous and intranasal insulin admini
stration[29,30].

Attempts are being made to unscramble the cellular 
and molecular mechanisms connects diabetes and 
AD. Present review critically examines impaired insulin 
signaling in diabetes as well as in AD patients with 
emphasis on critical molecular players such as fork head 
box O1 (FOXO1), mammalian target of rapamaycin 
(mTOR) and glycogen synthase kinase 3 beta (GSK3β) 
which can be potential therapeutic targets.

DIABETES MELLITUS
Diabetes mellitus (DM), a complex metabolic disorder 
is characterized by hyperglycemia with several macro
vascular (coronary artery disease, peripheral arterial 
disease, and stroke) and microvascular complications 
(diabetic nephropathy, neuropathy, and retinopathy)[31]. 
Risk of developing any of microvascular complications 
of diabetes depends upon both the duration and 
the severity of hyperglycemia. Aldose reductase, 
initial enzyme in the intracellular polyol pathway is 
a key player involved in the development of diabetic 
complications. Polyol pathway converts glucose into 
sorbitol (glucose alcohol). Hyperglycemic condition 
increases the flux of glucose into this pathway and 
results in sorbitol accumulation which further leads to 
osmotic stress. Osmotic stress is reported to be most 
common underlying mechanism in the development of 
microvascular complications of diabetes[31]. American 
Diabetes Association has categorized diabetes as 
T1D and T2D. T1D is characterized by autoimmune 
destruction of pancreatic beta cells resulting in absolute 
absence of insulin whereas T2D is identified by peripheral 
IR. According to WHO reports 2012, 90% cases of 
diabetes are from T2D. Clinical and experimental 
studies suggested strong association between diabetes 
and cognitive impairment[3235]. T2D is at the edge of 
several risk factors such as life style, obesity, physical 
inactivity, gestational diabetes history as well as genetic 
predispositions[36,37]. The hallmark symptoms of the 
disease are polyurea, polydipsia, polyphagia and weight 
loss[38]. Mechanisms of T2D involves lipid breakdown 
within fat cells, elevated plasma glucagon levels as well 
as an increase in electrolyte retention[39]. 

AD 
AD is an age dependent neurodegenerative disorder 
associated with deposits of plaques and tangles in 
brain[40]. Only 1%5% of the AD cases are found to 
have genetic differences and out of these cases, only 
0.1% cases follow familial autosomal nonsex linked 
inheritance pattern[41]. AD was for the first time reported 
in 1906 by Alois Alzheimer, a German psychiatrist and 
pathologist as a progressive neurodegenerative disorder 
of memory loss and confusion[42]. Postmortem AD brains 
revealed intracellular accumulation of neurofibrillary 
tangles (NFTs) and extracellular deposition of amyloid 
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beta (Aβ) plaques as two major hallmarks of AD. 
NFTs are hyperphosphorylated form of tau protein, 
which are involved in microtubule dynamics while Aβ 
plaques are the cleavage product of amyloid precursor 
protein (APP) which is a transmembrane glycoprotein 
of unknown function. Mutation in three genes encoding 
APP, presenilin 1 (PSEN1) and presenilin 2 (PSEN2) 
contributes to genetic cases of AD[43]. These loci are 
responsible for the familial type of disease while environ
mental factors influence sporadic form of AD with 
unclear etiology. Mutated form of these genes increase 
production of Aβ42 protein product, a major component 
of senile plaques. ε4 allele of the apolipoprotein E 
(APOEε4) is another risk factor for AD[44,45] which is 
thought to contribute in neuronal lipid homeostasis, 
repairs injured neurons, maintains synaptodendritic 
connections and scavenges neurotoxins. Loss of 
cholinergic system is a major cause of cognitive deficit 
in AD patients and the current therapies are targeted at 
improving cholinergic functions[46].

TWIN MYSTERY OF AD AND DM: THE 
STORY SO FAR
In 1980, first line of evidence appeared when Adolfsson 
et al[47] performed glucose tolerance test on AD type 
dementia patients and hypothesized that hypoglycemic 
condition can ameliorate brain status. In 1994, Razay 
et al[48] spotted light on disturbed glucose metabolism 
and hyperinsulinemia in female AD patients and 
tried to establish a link between insulin dysfunction 
and dementia. In 1996, Messier et al[23] strengthened 
the evidences by uncovering the potential effects of 
glucose on memory and cognition of AD patients. In 
2003, Messier[49] further established a clear association 
between noninsulin dependent diabetes mellitus with 
neuropathy which is an incidence of vascular disease 
and retinopathy, he further suggested that DM is a 
probable risk factor for AD. Many more groups stepped 
ahead to address the fundamental question of whether 
the basic premise about the disease is true or not.

In 2005, Susanne de la Monte’s group at Brown 
University introduced the concept of brain diabetes 
or type 3 diabetes (T3D) and observed that after 
blocking brain insulin supply, neurons get disoriented 
and develops AD pathology in rats. This provided a 
promising platform to investigators to touch insight into 
T3D or brain diabetes[50]. In 2007, Li et al[50] published a 
review dedicated to common pathological process in AD 
and T2D which shared molecular degenerative cascades 
like dysfunction in insulin signaling pathway. In 2008, 
de la Monte et al[51] reappeared with some more set 
of explanations which were unclear in 2005. Diabetic 
brain was found to be compromised for acetylcholine 
homeostasis and cognitive impairment, whereas insulin 
sensitizers rescued these effects[52]. In 2009, Gotz et 
al[52] described the molecular commonalities between 
T2D and AD with hallmark feature of amylin deposition 

in pancreatic islets of T2D patients, whereas Aβ and 
NFTs deposition in AD brain which are characteristic 
fibrillar proteins leading to cell loss. In 2010, Saini et 
al[53] contributed a relevant publication to World Journal 
of Diabetes, establishing a molecular mechanism of IR 
in T2D. Crucial molecular players in these pathways 
came into the picture and provided new therapeutic 
targets. Streptozotocin induced diabetic rat model 
showed coappearance of tau hyperphosphorylation 
and cognitive decline as an interesting evidence[55]. On 
the basis of clinical and biochemical evidences, it was 
further suggested that both of these diseases promote 
each other’s progression[56]. It has recently been found 
that proinflammatory signals in the brain impair insulin 
signaling, mitochondrial dysfunction, synaptic crosstalk 
as well as cognitive impairment[57].

Since 1980, many reports appeared in literature 
to describe the correlation between these two distinct 
problems with common molecular and cellular interface. 
Glucose metabolism and insulin signaling are major 
elements bridging AD and diabetes. Some relevant 
reports, unraveling the twin mystery of AD and DM are 
listed in Table 1.

THE CHICKEN OR EGG QUESTION
In spite of so many striking evidences, due to common 
interface of homeostatic mechanisms of AD and DM, the 
chicken or the egg question has remained unresolved. 
Citing all relevant findings, in 2005, first time 
Suzanne de la Monte has introduced insulin signaling 
dysfunction as a core of AD. To untangle this mystery, 
evidence of crosstalk between AD and DM, were put 
forward as crucial milestones. Patients with T2D were 
found to be at high risk of developing mild cognitive 
impairment (MCI), dementia and AD[60,61]. Similar type 
of evidence for MCI, dementia and AD were found 
in experimental models of diabetes[56,6265]. AD brains 
have similar pathogenesis as observed during insulin 
deficiency[24,6668]. Studies with AD patients and animal 
model of AD showed that intranasal insulin therapy 
significantly improved cognitive performance[6971]. 
These clinical and experimental studies suggested that 
both of these disorders share common biochemical and 
molecular cascades[60,72,73]. Some of these common 
bridging elements have been schematically represented 
in Figure 1. Interestingly, insulin has been found to 
regulate Aβ and tau metabolism, which are major 
hallmarks of AD[74,75]. It is also evident that in T2D 
patients insulin signaling dysfunction accelerates AβPP 
(amyloid beta precursor proten)/Aβ trafficking from 
transGolgi network, a major site for Aβ generation and 
alters dynamicity of a Aβ synthesis[75]. Some studies 
report the presence of some downstream regulators of 
insulin signaling pathway which are involved in cleavage 
of AβPP at γsecretase site, a determining site for Aβ 
amyloidogenicity[76]. Although, investigators found 
many evidences of common features in both of these 
disorders, the chicken or the egg question is still valid 
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feature of T2D[79,80]. Amyloid deposits in islets consist 
of 37 amino acid peptide referred to as islet amyloid 
polypeptide (IAPP) amylin[81,82]. Aβ and IAPP have same 
folding patterns and configuration[83]. IAPP is reported to 
generate islet βcells toxicity in the same way as Aβ do 
in neurons. Although we are far to understand the exact 
mechanism of amyloid formation, it can be speculated 
from the emerging data that amyloid formation is a 
basic cause of AD, DM and other disorders related to 
protein deposition[8486].

IR AS COMMON METABOLIC 
COMPROMISE IN AD AND DM
Glucose is the only required source of energy for neu
rons and any disruption in glucose metabolism leads 
to compromised neuronal functions[39]. Presence of 
insulin is crucial for brain in terms of its peculiar CNS 
functions[87] but any disturbance in its physiological level 
leads to CNS dysfunction. IRs are reported with low 
binding affinity with insulin in postmortem AD brain[87,88]. 
Moreover many other insulin signaling markers were 
altered in AD brain[24]. Elevated insulin plasma level in 
AD patients indicates a closed association of AD and 
IR[26,28]. Animal model studies revealed that factors 
contributing to T2D also regulate Aβ dynamics[89]. 
With this set of data it is clearly understood that IR or 
impaired IRs not only typify T2D but also orchestrate 
AD. Figure 2 depicts that how IR bridges peripheral and 

and needs parsimonious explanations. Key reports 
supporting AD like symptoms in DM patients and DM 
like symptoms in AD patients are listed in Table 2.

AMYLOIDOGENESIS: A COMMON 
PATHOLOGY IN AD AND DM
Protein structure and function is crucial for maintenance 
of life, moreover its mishandling leads to diverse 
pathological conditions. Neurodegenerative disorders lie 
in a class of disorders associated with different types of 
abnormal fibrous, extracellular poteinaceous deposits 
which are referred as amyloid[77]. βsheet structured 
insoluble moieties play an important role in the pathology 
of many protein misfolding diseases[77]. Globular proteins 
due to their tertiary structure constrain, undergo 
destabilization of their native structure and adopt 
partial folded and unfolded form while natively folded 
proteins are devoid of any ordered form so they passes 
through the stabilization process of fibrillogenesis and 
acquire a partially folded conformation[78]. In a crowded 
cellular milieu when functional protein erroneously 
interacts with other components and transforms itself 
into ordered stable form, the phenomenon is known as 
amyloidogenesis. 

Interestingly AD and DM both involve amyloido
genesis. Extracellular deposition of Aβ plaques is a 
feature of AD while amyloidogenic peptide deposition 
in pancreatic islets of Langerhans is a characteristic 

  Ref. Key findings

  Adolfsson et al[47] Hypoglycemic condition can ameliorate brain status in AD
  Razay et al[48] Disturbances in glucose metabolism and hyper-insulinemia in female AD patients are responsible for cognitive decline
  Ruigómez et al[58] Documented a relationship between non-insulin dependent diabetes and neuropathy
  Li et al[50] Defective insulin signaling is a shared degenerative cascade in disease pathology of both AD and DM
  Ke et al[59] Amylin deposition in pancreatic islets of T2D patients whereas, Aβ and NFTs deposition in AD brain are common hallmarks 

feature of diabetes and Alzheimer’s in terms of protein deposition
  Saini[53] Elucidated cellular and molecular mechanisms of insulin resistance and provided understanding for the molecular therapeutic targets
  Park[54] T2D and AD have some common pathogenic alterations like defects in insulin signaling, Aβ clearance, glucose metabolism, 

O-GlcNAcylation, Aβ aggregation by AGEs, inflammation, oxidative stress and circulating cortisol levels
  Correia et al[55] Amyloidogenesis and mitochondrial dysfunction are common denominators potentiating brain dysfunctions
  Talbot et al[57] Brain insulin signaling pathway including IGF-1R → IRs-2 → PI3K signaling is directly involved in AD and thus one of a causal 

factor in disease pathogenesis

Table 1  Relevant reports bridging Alzheimer’s disease and diabetes mellitus

AD: Alzheimer’s disease; DM: Diabetes mellitus; T2D: Type 2 diabetes; NFTs: Neurofibrillary tangles; Aβ: Amyloid beta; AGEs: Advanced glycation end 
products; IGF-1: Insulin like growth factor-1; IRs: Insulin receptors; PI3K: Phosphatidylinositide 3-kinases.

  Ref. Key findings

  Gasparini et al[75] In T2D patients insulin metabolism dysfunction accelerates AβPP/Aβ trafficking from trans-Golgi network, a major 
site for a Aβ generation 

  Phiel et al[76] Some studies claim for the presence of downstream regulators of insulin signaling pathway which are involved in 
cleavage of AβPP at gamma-secretase site, a determining site for Aβ amyloidogenicity

  Steen et al[24] Extensive dysfunction of IGF-I and IGF II signaling mechanisms reported in AD brain
  Rivera et al[66] Insulin and IGF gene expression altered with abnormal receptor binding in AD brain

Table 2  Symptoms of Alzheimer’s disease symptoms in diabetes mellitus patients and symptoms of diabetes mellitus in Alzheimer’s 
disease patients

AD: Alzheimer’s disease; T2D: Type 2 diabetes; Aβ: Amyloid beta; IGF: Insulin like growth factor.
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neuronal IR and leads to AD.

How insulin modulates brain functions?
Insulin expression in brain remained a debated topic for 

investigators and raised a question on its significance 
at ectopic site. Brain synthesizes insulin locally as well 
as receives through the blood brain barrier (BBB) 
mediated transfer[90]. With curious attempts, scientists 
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Figure 1  Schematic representation of commonalities between diabetes and Alzheimer’s disease. Hyperglycemia and hyperinsulinemia are hallmark features 
of diabetes which leads to advanced glycation end product, reduced insulin supply to brain as well as mitochondrial dysfunction, which further leads to vicious cycle 
of oxidative stress. On the other side, any defect in glucose metabolism and insulin signaling in brain is one metabolic status of Alzheimer’s disease brain which 
translates into insulin resistant brain status and converges to all common interfaces of mitochondrial dysfunction, oxidative stress and neurodegenrtaion. IDE: Insulin 
degrading enzyme; Aβ: Amyloid beta; AGEs: Advanced glycation end products; ROS: Reactive oxygen species.

Figure 2  Diagrammatic representation of peripheral and neuronal complications of insulin resistance in case of type 2 diabetes. Insulin signaling dysfunction 
in peripheral system affect muscle, adipose tissue and liver (by decreasing glucose uptake, increasing free fatty acids) and by increasing glucose production 
respectively. When this dysfunction appears in CNS as a diabetes complication (by limited insulin supply to brain), it leads to deposition of Aβ plaques and NFTs 
in extracellular and intracellular milieu of neurons respectively and represents AD type brain status. AD: Alzheimer’s disease; T2D: Type 2 diabetes; IDE: Insulin 
degrading enzyme; PI3K: Phosphoinositide 3-kinase; Aβ: Amyloid beta; NFTs: Neurofibrillary tangles; GSK3β: Glycogen synthase kinase 3 beta; FFA: Free fatty acids; 
BBB: Blood brain barrier.
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documented its role in feeding behavior and energy 
homeostasis which integrate whole body physiology[91]. 
The first article unpinning the relation between brain 
and insulin was reported in 1960, in which intracisternal 
injection of insulin in dogs reduced glucose levels, 
both in CSF and blood with its direct effects on the 
parasympathetic area of the brainstem[92]. Later, brain
centered glucoregulatory system (BCGS) that is involved 
in maintenance of blood glucose levels was found 
to act via insulin dependent as well as independent 
mechanisms[93]. The hypothesis of BCGS and its 
crosstalk with pancreatic islets gained experimental 
momentum by multiple supporting evidences that 
provided a clear understanding of BCGS[93]. BCGS is 
recognized as mechanistic node present in CNS which is 
channeled through peripheral hormone status[93]. Both of 
these regulatory nodes cooperate with each other and 
compensate the load of other’s failure but when both are 
compromised, DM is an unavoidable issue.

Insulin as a synapto-dendritic player
Insulin has drawn a wide trajectory in brain molecular 
milieu from cognitive function to orchestrate functions 
like development of neurite outgrowth, modulation 
of catecholamine release and uptake, regulation and 
trafficking of ligandgated ion channels, expression 
and localization gammaaminobutyric acid (GABA), 
NmethylDaspartate (NMDA) and αamino3hydroxy
5methyl4isoxazolepropionic acid (AMPA) receptors, 
synaptic plasticity regulation via NMDA, Phosphoinosi
tide 3kinaseAkt (PI3KAkt)[94] and maintenance of 
excitatory synapses[95].

Presence of IRs at synapses rich in plasticity (hip
pocampus and cortex) reveals its involvement in 
cognition[90]. This fact was further strengthened in 1999 
when Zhao et al[21] reported that rat hippocampus IRs 
expression is upregulated when they are subjected 
to spatial memory task in Morris water maze. IRs are 
enriched in synaptosomes[96], colocalizes with axon 
terminal markers synaptophysin, synapsin, etc.[97], and 
dominates in postsynaptic density (PSD) fractions to 
interact with scaffolding protein shank and PSD95. 
Insulin is also involved in various neuromodulatory 
functions such as electrophysiological properties of 
neurons[98,99], neurotransmitter receptors[100,101], traffi
cking of ion channels[102], neurotrophic effects[103,104] and 
the neuroprotective role against a wide range of insults 
such as apoptosis[105], oxidative stress[106], βamyloid 
toxicity[107] and ischemia[108] in animal models as well as 
human studies.

Hyperinsulinemia is reported to reduce cholinergic 
activity in mice brain and resulted in impaired reten
tion of an inhibitory avoidance[109]. It also alters mem
brane potential to affect the ion transport[110,111]. In 
streptozotocin induced rat model of DM, long term 
memory potentiation was found to be impaired and 
insulin treatment rescued the effects[112114]. With these 
set of potential findings, it is evident that insulin is 
crucial synaptodendritic player altering dendritic arbor 

morphology as well physiology.

INSULIN RECEPTORS PLAYING 
DOWNSTREAM MOLECULAR 
ORCHESTRA: INSIGHT INTO THE 
MECHANISMS
Investigators unraveled the IRs downstream molecular 
orchestra and speculated that IRs activation further 
activates PI3K/protein kinase B (PI3K/PKB) pathway[115]. 
GSK3β is a major player of this pathway and involved in 
long term potentiation/long term depression (LTP/LTD) 
which is a sole mechanism of memory formation and 
synaptic plasticity[116]. Other than insulin, PI3K can be 
activated by multiple growth factor ligands including 
nerve growth factor, brainderived neurotrophic factor 
(BDNF), glial cellderived neurotrophic factor (GDNF), 
insulin like growth factor1 (IGF1)[117]. 

After investigating for over two decades, it is safe to 
accept that PI3K/Akt signaling pathway is a potential 
window through which various ON/OFF switches 
of cognitive decline get operated. Protein kinase B 
(PKB), also known as Akt is a main downstream hub 
of various other pathways and exists with its widely 
expressed isoforms such as PKBα, PKBβ and PKBγ 
(predominates in CNS)[118]. Akt pathway has its regulating 
arms over neuronal survival, glucose uptake, angiogenesis, 
metabolism and proliferation[119]. Moreover Akt has a 
negative feedback regulation over these via phospha
tase and tensin homolog, protein phosphatase 2A, 
cjun Nterminal kinases (JNK) and forkhead box O 
(FOXO)[119]. 

Loss of PI3K control is a central mechanism of neuro
degeneration in DM patients[120]. Moreover, AD patients 
are reported with sustained PI3K/AKT signaling which 
is a primary response linking insulin, IGF resistance, 
tau pathogenesis and synaptic decline[121]. GSK3, 
mammalian target of rapamycin (mTOR) and FOXO 
are three main downstream targets playing this whole 
orchestra (represented in Figure 3).

Glycogen synthase kinase3β, a pivotal kinase in AD and 
diabetes
Extensive reports supporting pivotal role of GSK3β 
proposed “GSK3β hypothesis of AD”[107], according 
to which GSK3β overexpression leads to impaired 
memory, amyloid β accumulation, tau hyperphos
phorylation, neuronal defects and microglial mediated 
inflammation cascades. Genetic studies established 
that insulin signaling genes are also loci of AD[106]. 
Cholinergic system is one of the major regulating knob 
under GSK3β control with choline acetyltransferase and 
acetylcholinesterase as regulating keys[107,108]. GSK3β 
leads to reduction of acetylcholine synthesis, which is in 
accordance with the cholinergic deficit observed in AD 
brain[122]. GSK3β negatively affects axonal transport, 
microtubule dynamics and destabilizes microtubule by 
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lowering its affinity with GSK3β phosphorylated tau[9597] 
and contributes to AD pathology. Being a key mediator 
of apoptosis it may directly contribute to neuronal loss 
in AD[105,123]. GSK3β interestingly controls cell cycle 
in two way system by activating intrinsic pathway to 
trigger cell death and by inhibiting death receptors 
by extrinsic pathway[124]. In 2002, Sun et al[125] and in 
2003, Phiel et al[76] reported that GSK3β increases Aβ 
production by regulating APP cleavage. On exposure 
of Aβ, neurons inhibit PI3K pathway and increase 
GSK3β activity[126]. GSK3α as well as GSK3β both are 
found to be an inducer of tau phosphorylation[127132]. 
Drastic alteration in dendritic arbor and post synaptic 
density, a common morphological feature of AD brain 
has been observed in GSK3β deficient mice[132]. GSK3β 
is the only kinase involved in NMDARLTD[124]. It also 
maintains a threshold of LTP and LTD, i.e., maintenance 
of metaplasticity[116,133,134]. Modulation in regulated/
constituted expression of GSK3β orchestrates neuronal 
plasticity[84,116,134140]. GSK3β dramatically induces the 
internalization of AMPA and NMDA receptors[141,142] and 
decreases the level of PSD proteins, a molecular marker 
of memory acquisition[77]. GSK3β phosphorylates 
CREB protein to inhibit its function which is a universal 
modulator of memory. It aids in cytoarchitecture 
of cell by promoting actin and tubulin assembly for 
synaptic reorganization[143]. GSK3β is also a pivotal 
kinase involved in adult hippocampal neurogenesis 

which negatively regulates it by reducing the number of 
proliferating neurons in the dentate gyrus region[144,145]. 
GSK3β is directly involved in the production of pro
inflammatory cytokines such as interleukin (IL) 6, IL
1β, TNFα which indicates its positive regulation towards 
inflammatory mechanisms[146,147]. 

FOXO1 signaling: A mechanistic node for a vicious 
cycle of IR and Aβ up-regulation
FOXO1 signaling is a mechanistic node and regulates 
the fine balance of oxidative stress pathways (depicted 
in Figure 4). Before moving into the mechanism 
part, it has been briefly discussed about the dramatic 
story of its evolution in molecular series under 
discovery[148]. Many lines of evidence suggest its role 
in AD as well as IR with major involvement in cell 
proliferation, differentiation, cell survival, apoptosis and 
development of proliferative late onset diseases[148]. 
Short term activation of this player leads to protective 
mechanism of scavenging reactive oxygen species 
(ROS) which is a part of normal cell physiology 
but its persistent activation awakes the apoptosis 
pathway[148]. Cellular milieu tends to maintain a balance 
oxidant and antioxidants concentration to cope up 
any environmental stress, but whenever this balance 
acquires any plane of inclination, it comes to the cell 
survival[148].

Wnt and β catenin upregulate FOXO signaling via 

Blood Insulin

Insulin resistance

Glucose Insulin resistance

Hyperglycemia

Hyperinsulinemia

T2D

Activated FOXO response

Integrate information of cellular stress
Maintain cell homeostasis
Apoptotic induction
Cell cycle regulation
Adaptation to hypoxia
Positive feedback to more ROS production

IRS

PI3K
Activated GSK3β response

Aβ and Tau production
Synaptic receptor internalization 
Induction of LTD
Alteration in cholinergic transmission
Microtubule dynamics disturbance
Inflammation
Deformed cyto-structure

AktFOXO GSK3β

(Activated) (Activated)

mTOR
Inactivated mTOR response

(Inactivated)

Loss of growth and translational control
Disturbed protein folding mechanisms and autophagy
Alteration in synaptic plasticity, memory and cognition

Figure 3  Diagrammatic representation of molecular orchestra downstream of insulin receptor. IRs activation leads to downstream PI3K signaling pathway with 
Akt as a central hub which diverges into three main branches including FOXO, GSK3β and mTOR. Akt inhibition leads to activated FOXO and GSK3β response while 
inactivated mTOR response. FOXO activation leads to cellular stress response, mTOR dysfunction leads to loss of translational control and altered cognition while 
GSK3β activation leads to Aβ and tau production. T2D: Type 2 diabetes; PI3K: Phosphatidylinositide 3-kinases; Aβ: Amyloid beta; GSK3β: Glycogen synthase kinase 
3 beta; FOXO: Forkhead box O; mTOR: Mammalian target of rapamycin; LTD: Long term depression.
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oxidative stress pathways[148]. Wnt signaling inhibits 
GSK3β expression and mediates β catenin transport into 
the nucleus and modulates transcription of T cell factor 
family gene, which has function opposite to FOXO1, 
this is known as the canonical pathway of Wnt signaling 
and involved in lipid and glucose metabolism[149]. ROS 
production inhibits canonical pathway of Wnt signaling 
and guides β catenin towards FOXO which acts as a 
cofactor of FOXO and enhance its transcription. Foxo 
signaling promotes gluconeogenesis and leads to 
hyperglycemia and hyperinsulinemia which further 
increases NFTs and Aβ accumulation to gear up ROS 
production and drives the vicious cycle of Oxidative 
stress[150].

When insulin is absent, FOXO1 is located in the 
nucleus and promotes transcription of respective 
enzymes for hepatic glucose production while in the 
presence of insulin; PKB is activated and leads to nuclear 
exclusion of FOXO 1 by phosphorylating it. State of IR 
in case of DM leads to impairment of PKB pathway and 
inhibition of FOXO activity resulting in hepatic glucose 
production triggering a vicious cycle of hyperglycemia 
and oxidative stress. FOXO, the downstream activator 
of PI3K/AKT controls energy homeostasis, locomotor 
behavior and leptin sensitivity[151,152].

mTOR pathway: A crucial intersection of AD and DM
mTOR pathway has been evolved as environment 

sensor and growth promoter in unicellular organisms 
but as multicellularity emerged it acquired its role 
in central growth and homeostasis mechanisms. 
Metabolism and cell growth are two basic requirements 
and their proper functioning depends upon each other. 
Since mTOR pathway is centered for growth processes, 
it is activated by nutrition as well as insulin[136]. In 
evolutionary history from yeast to rodents, mTOR has 
evolved as key modulator of aging. Many investigators 
attempted to understand its basic role and decades 
of extensive pursuit revealed extensive network of 
mTOR. mTOR is found to accelerate growth but it has 
compromised some of metabolic signals by conflicting 
pathways and introduced a paradox or better to say 
insulin paradox[137].

This paradox appeared from the evidences of 
compromised insulin signaling with good health and 
IR leading to compromised health while both of the 
cases are of poor insulin signaling[138]. Parsimonious 
explanations are, compromised insulin signaling is 
unable to activate mTOR (good for health) while IR 
may be due to hyperactive mTOR which is bad. So in 
previous case compromised insulin signaling inhibits 
mTOR insurgence while active mTOR is promoting IR 
in the later case[138]. Mechanistic node of this story, S6 
kinase (S6K) is activated by mTOR to phosphorylate 
and degrade insulin receptor substrate1 (IRS1) which 
ultimately leads to insulin desensitization[139,140].

Vicious cycle of insulin resistance and Aβ upregulation via  FOXO signaling:
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mTOR signaling has a dramatic interplay with Aβ 
and tau proteins which are two hallmarks of AD in their 
aggregated forms. It was reported in 2012 that Aβ is an 
activator of PI3K/Akt pathway which further switches 
on mTOR cascade[153]. In vitro studies suggest that Aβ 
application elevates the level of p70S6K, a downstream 
target of mTOR which contributes in development of 
NFTs[154,155]. Consistent in vitro reports validated the fact 
that mTOR activity and activated p70S6K are either 
cause or consequence of the molecular cascade and 
hence are found with elevated levels in hippocampus and 
cortex of animal model of AD[156,157]. mTOR suppression 
leads to induction of autophagy which is a cell cleaning 
process. In AD brain it is evident that neuronal auto
phagy is induced to end up with impaired steps and 
leads to massive accumulation of Aβ plaques[158].

mTOR has characteristic property of maintenance of 
protein homeostasis, translational control and cellular 
maintenance, which plays an important role in the 
maintenance of synaptic plasticity. Figure 5 provides 
detailed information of mTOR domain. To execute 
these entire tasks mTOR pathway is operated under 
fine control of several surface receptors such as NMDA, 
dopaminergic and metabotropic glutamate receptors 
(mGluRs) and BDNF[159163]. mTORC1 is one of the 
downstream targets of PI3K/AKT pathway which is very 
important for synaptic plasticity, neuronal repair, protein 

folding mechanism and autophagy[164,165].

INFLAMMATION: A COMMON ALARM 
FOR AD AND DM
Inflammation is an exceedingly complex but equally 
fascinating and costly host defense system evolved with 
proximate set of mechanisms and exhibit phenotypic 
plasticity. It is crucial for life but once dysregulated, 
it can be detrimental. Emerging field of metabolic 
and aging syndromes spurred a renewed interest of 
scientists into inflammatory mechanisms. This is a 
compensatory mechanism for body to cope up with the 
hostile environment which involves many subtle factors 
and specialized cells to fight against any threat[166]. It has 
very critical progressive role with analogous mechanism 
in diabetic patients showing IR and defective neuronal 
signaling in AD patients[167]. Thus, DM and AD share 
inflammation as a common pathological feature. 

Studies have reported elevated levels of proinflam
matory cytokines such as TNFα, IL6, IL1β, etc., in 
AD patients[168]. In diabetes patients, elevated TNFα 
triggers various stress kinases to phosphorylate IRS1 
(at inhibitory serine residues) and disrupts insulin 
signaling[169171] (explained in Figure 6), while blocking 
TNFα rescues its effects in obese mouse model[172,173]. 
JNK and doublestranded RNAdependent protein kinase 
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are major stress kinases which are common regulatory 
nodes between inflammation and metabolism[174,175]. 
Since insulin signaling contributes to normal functioning 
of neurons, any inflammation mediated alteration in 
these, results into defective neuronal function[95,176,177]. 
These evidences suggest that there is a common me
chanistic pathway adopted by peripheral IR in T2D as 
well as impaired brain insulin signaling in AD.

OXIDATIVE STRESS: A COMMON 
BURDEN IN AD AND DM
Normal body physiology tends to maintain a balance 
between production of ROS and body’s antioxidant 
defense system and any sort of imbalance altering this 
dynamic system leads to onset of metabolic disorder 
with cognitive dysfunction[178]. Hydrogen peroxide, 
hydroxyl radical, superoxide ion and singlet oxygen 
are such reactive species which are abundantly 
produced in cellular respiration cycles and have very 
short half life[179]. It is known that diabetic patients 
have more oxidative cellular environment as compared 
to healthy ones[180182]. Hyperglycemic condition has 
proportionality with sorbitol production which reduces 
NADPH, a cofactor for GSH production and hence 
decreases antioxidant levels in the body[183185]. One more 
prevalent mechanism of diabetes contributing towards 
ROS is insurgence of advanced glycation end products 
(AGEs) production[183,184,186], which binds to cell surface 
receptors, i.e., receptor for advanced glycation end 
roducts (RAGEs). RAGEsAGEs interaction leads to ROS 

production via NADPH oxidase system which in turn 
activates RasMAPK pathway and ultimately nuclear 
factor kappalightchainenhancer of activated B cells 
(NFκB) activation[184,187]. Hyperglycemia also leads to flux 
of glucose or FFA into blood which turns hexosamine 
pathway on[188] for further ROS production[189]. Elevated 
levels of FFA have an adverse effect on mitochondrial 
functioning and uncouple oxidative phosphorylation to 
contribute in ROS production[190,191]. ROS production 
worsens the status of insulin signaling and stress 
pathways which lead to further ROS production to turn 
a vicious cycle on.

High polyunsaturated fatty acid proportion with GSH 
content leave neurons vulnerable and make them prone 
to free radical attack[192]. A noticeable increase in lipid 
peroxidation was observed in brain of AD patients[193195]. 
Oxidative stress and Aβ aggregation has both way 
relationships controlling each other’s turnover. Oxidative 
stress channels regulate Aβ dynamicity from non
aggregated form to aggregated form[196]. Aggregated 
Aβ acts like a source of free radical production and 
lipid peroxidation[197] to drive brain towards neurode
generation. 

MITOCHONDRIAL VULNERABILITY IN 
CASE OF AD AND DM
Mitochondria, a result of 1.5 billion years of obligate 
endosymbiotic coevolution is a subcellular niche to 
take care of cell survival as well as programmed cell 
death[198]. Several decades of research has establis
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hed that fissionfusion dynamicity of mitochondria is 
critical in neurodegeneration[198]. As the brain is offered 
with limited capacity of glycolysis, neuronal cells are 
highly dependent on aerobic oxidative phosphorylation 
for energy production which is an electron transfer 
event from lower redox potential to higher redox 
potential[199202]. Although, this electron chain transfer 
process is very efficient, still some ROS are produced 
which leads to oxidation of mitochondrial DNA, lipids and 
proteins further contributing to mitochondrial dysfunction 
which is a prominent feature of AD[181,203].

Substantial data from diabetic patients and animal 
model systems revealed that brain faces several struc
tural and functional deficits. Functional impairment of 
mitochondria leads to neurodegeneration and loss of 
control over neuronal metabolism. A study reflected 
that there is a significant decrease in coenzyme Q 
levels in diabetic animals which represents a marked 
deficit in antioxidant defense system[204]. There are 
reports which are directly linking impairment in glucose 
utilization with mitochondrial dysfunction and metabolic 
disturbances[205208]. In 2003, clear evidence of oxidative 
phosphorylation uncoupling was found in rat model of 
T2D[209]. Mitochondrial capacity of Ca2+ accumulation 
was also found to decrease in case of diabetes which is 
a favorable environment for mitochondrial permeability 
transition (MPT) opening and ultimately leads to cell 
death[210,211].

AD animal models as well as human studies sug
gested that AD pathology leads to mitochondrial 
dysfunction and ROS production. Some crucial molecules 
such as Aβ binding alcohol dehydrogenase are reported 
to aid to AD pathology by mediating Aβ induced cell 
death via mitochondrial channel[209,212]. In some reports it 
is mentioned that one of the insulin degrading enzymes  
isoform, a well established regulator of Aβ dynamicity 
targets mitochondria and interfere with its normal 
functioning[213]. Aβ is also found to be a good inhibitor 
of respiratory chain complex and thus leads to marked 
decrease in cellular ATP levels[214,215]. Importantly, Aβ 
40 and Aβ 2535 contribute in uncoupling of oxidative 
phosphorylation and impair respiratory chain as well 
as MPT opening[204,210,211]. Moreover Aβ induces H2O2 
production which is rescued by CoQ10, a key enzyme of 
electron transport chain[216]. Various tricarboxylic acid 
(TCA) cycle enzymes such as pyruvate dehydrogenase, 
αketoglutarate dehydrogenase and ATP citrate lyase 
were also found to be dysregulated in case of AD[217].

Mitochondrial morphology was found to be altered 
with some functional loss in neurodegenerative 
disorders such as AD[218221]. In brief it can be mentioned 
that a small metabolic compromise is sufficient to 
trigger a cascade and disrupt normal mitochondrial 
function which plays a vital role in neuronal survival, 
growth and plasticity.

THERAPEUTIC OPPORTUNITIES
Sedentary life style, dietary changes and genetic 

predisposition are conspired forces responsible for 
worldwide epidemic of metabolic and aging syndrome. 
Discovered molecular trajectories from T2D to T3D 
gained experimental momentum for new therapeutic 
interventions. Elucidating role of antidiabetic drug for 
the treatment of AD translated the disease informa
tion and added new armaments to the arsenal of 
putative therapies. It is unquestionable issue that 
both of these disorders share common pathologies 
including glucose metabolism defects, mitochondrial 
dysfunction, oxidative stress and abnormal deposition 
of amyloidogenic proteins[55]. The reason why insulin got 
this recognition under frontier’s of Alzheimer research 
is that its high level in CNS revealed its own crucial 
role in learning, memory, cognition and synaptic plasti
city[222]. Although, brain has potential pyramidal neurons 
involved in synthesis and secretion of insulin, majority 
of brain insulin is replenished by peripheral source from 
pancreatic β cells transported through blood across 
BBB[223]. 

There are some well known potential oral drugs [such 
as biguanides, sulfonylureas (SUs), thiazolidinediones 
(TZDs), and dipeptidyl peptidaseIV (DPPIV) inhibitors], 
injections (e.g., insulin and GLP1 analogs), and some 
other molecules like glucokinase activators, amylin 
analogs, D2dopamine agonists, bile acid chelators, 
and sodium/glucoselinked transporter2 inhibitors etc., 
established for T2D. Most of the antidiabetic drugs 
act through the mechanism of maintenance of plasma 
glucose level, regulation of inflammatory cascades and 
establishing the balance between ROS and antioxidants. 
We will briefly provide an overview of experimental and 
clinical trials of some antidiabetic drugs which are being 
tested in patients with AD and with low to moderate 
mild cognitive impairment.

Metformin
Metformin, a well known biguanide antidiabetic drug 
is used to reduce IR. It sensitizes liver and skeletal 
muscle cell via AMP kinase cascade[224,225]. Brain 
is most vulnerable vital organ for oxidative stress, 
because of high oxidative metabolism rate and limited 
antioxidant level. Under oxidative stress mitochondrial 
permeability pores open up to release cytochrome c 
and trigger apoptotic cascade. Metformin is reported 
to inhibit opening of these permeability pores in 
ectoposideinduced cell death model to inhibit apoptotic 
cascade[226]. Metformin is also involved in neurogenesis 
by activation of protein kinase CCREB binding pathway 
(PKCCBP) pathway in neuronal cell culture study, in 
human and rodent model system[227]. In neuronal cell 
lines (neuro2A), metformin promotes insulin action 
and attenuates molecular and pathological features 
observed in AD. Metformin treatment was found to 
reduce the risk of dementia in human aged subjects[228]. 
AD patients taking calcium in diet supplemented 
with metformin were found to have better cognitive 
performance[229]. Thus these evidences support the fact 
that metformin is not only a known antidiabetic agent 
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but also an effective neuroprotective molecule.

Sulphonylurea
SUs is a class of antidiabetic drugs which are used as 
mono or combined therapy to increase insulin secretion 
by enhancing proinsulin level via voltage gated calcium 
channel but the actual mechanistic target is still under 
investigation[230]. SUs limits liver glucose production 
and decreases insulin clearance by liver. Glipizide and 
Glyburide (glibenclamide) are the main SUs compounds 
which are investigated for memory and cognition in 
diabetic patients.

Experimental and clinical studies
In case of diabetes and AD, PI3K/mTOR is found to 
be aberrantly activated. Glyburide and glipizide are 
reported to have properties of mTOR antagonist[231] 
but their efficacy to recover AD patients is yet to 
be determined. Inflammosomes are involved in the 
secretion of proinflammatory cytokines that results 
in inflammation and associates it to AD. Along with 
inhibiting mTOR pathway, gliburide is found to inhibit 
inflammosome and thus brain inflammation[232]. Exalto 
et al[230] reported that SUs treated T2D patients shows 
improved AD type dementia symptoms but the precise 
mechanism is still unknown.

DM patients treated with glipizide are reported to 
have better learning efficiency[233]. Some recent studies 
show that there is no alteration in the development of 
AD in population using SUs in long term[234]. Metformin 
and SUs in combination are reported to reduce the risk 
of dementia upto 35% in a prospective cohort study[228].

Intranasal insulin
Intranasal administration of insulin is reported to attenu
ate reduced insulin signaling in AD[235]. Importantly, 
intranasal insulin does not adversely affect blood insulin 
or glucose levels.

Experimental and clinical studies 
It is evident that AD patients have low insulin level and 
brain insulin resistant state which leads to impaired 
energy metabolism of neurons and make them vul
nerable for survival. Insulin has been reported with 
its antiamyloidogenic effect in human neuronal cell 
lines[236]. Some reports have shown that Aβ induced 
neuronal IR is attenuated by insulin treatment[237]. 

In a study it is found that 20 IU insulin twice a day 
over a period of 21 d in early AD or MCI subject’s helps 
to retain verbal information more effectively[30]. In 2006 
Reger et al[30] showed that 10 IU intranasal insulin 
improves cognition in APOE4 AD/MCI subjects.

TZDs
TZDs (also represented as glitazones) are a potential 
class of drug used for T2D which includes rosiglitazone 
(avandia), pioglitazone (actos) and troglitazone (rezulin). 
Mechanism of this group lies in activation of peroxisome 
proliferatoractivated receptors by mimicking as a po

tential agonist of it and involved in transcription of lipid 
and glucose metabolism genes[238,239]. Since TZDs are 
antiamyloidogenic and antiinflammatory compounds 
with insulin sensitizing role, these delay neurode
generation[240]. It also improves glycemic control in 
diabetic patients by inhibiting hepatic gluconeogenesis. 
Moreover, TZDs (mainly Troglitazone) are supposed to 
have their involvement in rescuing memory loss and 
decreasing plasma Aβ 40 and Aβ 42 levels[241,242] but 
again it needs to be investigated further. 

Experimental and clinical studies
Rosiglitazone is reported to attenuate neuronal IR 
induced by Aβ oligomers[237]. Pioglitazone is found to 
improve cognitive performance in a rodent dementia 
model induced by intracerebroventricular (ICV) injection 
of streptozotocin[243].

In a randomized trial rosiglitazone (8 mg) is reported 
to improve cognitive function in mild to moderate AD 
patients (non APOE4 carrier[244]). In contrast, a recent 
phase III trial of the same drug has failed to show 
similar effects in AD subjects[245]. Moreover, long term 
use of TZDs, in general has no effect on risk of AD 
development[234].

Glucagon like peptide 1 
Glucagon like peptide 1 (GLP1) analogs are “incretin 
mimetics”, used to treat T2D. Exenatide, a 39 amino 
acid long peptide is analogous to human GLP1 which 
stimulates insulin secretion in a glucose dependent 
fashion. In brain these analogues bind tor GLP receptors 
and mediate various functions like suppression of 
glucagon production, slow down gastric emptying, 
increase satiety and reduce food intake with lower risk 
of hypoglycemia.

Experimental and clinical studies
In an animal study, GLP1 is reported to protect neurons 
from oxidative stress with reduced apoptosis, plaque 
formation and inflammatory response. Moreover, it 
strengthens synaptic plasticity in AD mouse brain l[246]. 
It is shown to improve spatial memory in transgenic 
AD mice model[247]. Liraglutide and lixisenatide are 
GLP1 receptor agonists which are reported to activate 
cAMP in the brain and induce neurogenesis[248]. In 
addition, liraglutide attenuates memory impairments in 
a mouse model of AD[249]. Subcutaneous administration 
of liraglutide is reported to restore both peripheral 
and brain insulin sensitivity and ameliorates tau 
hyperphosphorylation in rat model of T2D[250]. Clinical 
research on the effect of liraglutide on AD patients is 
still going to evaluate the changes in cognition using a 
neuropsychological test battery[251].

DPP IV inhibitors: Oral hypoglyceimic
DPPIV, pharmacological inhibitors are oral hypog
lycemic. These compounds reduce blood glucose levels 
by increasing incretin (GLP1 and GIP levels) and 
attenuating glucagon effects. Sitagliptin, Vildagliptin, 
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Saxagliptin, Linagliptin, Teneligliptin, Gemigliptin and 
Dutogliptin are major members of gliptins, out of which 
Dutogliptin is under Phase III clinical trial[252]. Effect of 
sitagliptin administration is studied double transgenic 
mice model of AD and reported to significantly delay 
AD pathology including amyloid deposition and 
taupathies[253]. 

Insulin and oral anti-diabetics: A combined therapy
Combination of insulin and other oral antidiabetic 
drugs are reported to lower neuritic plaque density 
by 20% in AD brains[253]. Metformin in combination 
with rosiglitazone or glyburide is reported to improve 
working memory very significantly[253]. In a prospective 
cohort study, metformin and SUs are reported to reduce 
risk of dementia by 35%[228]. Although, a number of 
antidiabetic drugs are reported to improve cognitive 
effect, it is still not well understood whether these 
effects are due to glucose lowering effects or adopt 
different pathways of neuroprotection. A broad range 
of anti diabetic therapies are undergoing clinical trials 
including those involving stimulation of the pancreatic 
betacell with the gutderived insulinotropic hormones 
(incretins), GIP and GLP1[254]. Some drugs have 
good glycemic control but have no history to improve 
cognitive functions[255]. In a study diabetes patients 
were maintained at normoglycemia over 3 mo but 
no significant improvement in cognitive performance 
was observed[256]. Other than glycemic control, anti
diabetic drugs improve cognitive function. Although 
various clinical trials are underway to evaluate the role 
of antidiabetic drugs in treatment of neurodegenerative 
disorders such as dementia and AD but the search is still 
not over.

CONCLUSION
This review provides a synopsis in which a metabolic 
disturbance becomes indispensible for life. This is 
a talk of a metabolic problem which emerges as a 
molecular signal defect and takes a form of syndrome 
with multiple complications. Spotlighted player, insulin 
draws a trajectory from diabetes to AD with multiple 
divergence and convergence. 

AD and DM are two devastating syndromes with 
complex molecular interplay. Evidences of their shared 
molecular and biochemical footprints shed light on. 
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