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Abstract
Recurrence rate of hepatocellular carcinoma (HCC) is very 
high even after curative surgery, and no postoperative 
therapies have been definitively shown to prevent 
HCC recurrence. Sorafenib is proved to be effective 
for advanced HCC by two large randomized controlled 
trials in 2008 and 2009. Therefore it stands to reason to 
expect that adjuvant sorafenib may improve post-surgery 
outcomes of patients with HCC. However, many questions 
still exist about the value of sorafenib for patients with 
HCC after surgery or transarterial chemoembolization. 
In this editorial, we complehensively reviewed the safety 
and efficacy of adjuvant sorafenib for patients with 
hepatocellar carcinoma after surgery or transarterial 
chemoembolization. We emphasized the positive and 
negative role of sorafenib.

Key words: Adjuvant; Hepatocellular carcinoma; Tumor 
recurrence; Sorafenib

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Sorafenib is effective for advanced hepato
cellular carcinoma (HCC). However, its positive role as 
adjuvant therapy for HCC after surgery or transarterial 
chemoembolization is controversy.
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INTRODUCTION
Large randomized controlled trials have shown tran­
sarterial chemoembolization (TACE)[1,2] and sorafenib[3,4] 
monotherapy to extend median overall survival by 
approximately 3 mo over best supportive care in patients 
with hepatocellular carcinoma (HCC) in Barcelona Clinic 
Liver Cancer (BCLC) stage B or C. Though hepatic 
resection is the mainstay treatment for HCC, tumor recur­
rence is very high after surgery[5]. Therefore it stands 
to reason to expect that sorafenib may improve post-
resection outcomes of patients with multinodular HCC or 
patients at high risk of HCC recurrence. 

STUDY ANALYSIS
In the recent issue of the World J Gastroenterol, Li et 
al[6] reported a small retrospective study which enrolled 
36 male patients with BCLC stage C HCC after hepatic 
resection. Twelve patients received resection plus 
sorafenib while other 24 patients received resection 
alone. The authors found patients in the resection plus 
sorafenib group had a significantly longer time-to-tumor 
progression (TTP) and median overall survival compared 
to patients in the resection alone group.

However, the phase Ⅲ placebo-controlled study 
STORM trial[7], which included 1602 patients from 28 
countries with early-stage HCC following surgical resec­
tion or local ablation, found that adjuvant sorafenib did 
not significantly affect recurrence-free survival, time to 
recurrence or overall survival. The authors concluded 
that no evidence of clinical benefit exists for adjuvant 
sorafenib therapy in such patients.

Also, the phase Ⅱ SPACE trial comparing the efficacy 
and safety of TACE with or without sorafenib failed 
to meet its endpoint of prolonging TTP[8]. This raises 
important questions about the use of adjuvant sorafenib 
in the clinic.

The SPACE trial[8], which involved 307 Asian and non-
Asian patients with multinodular HCC in BCLC stage B, 
showed that the combination of TACE and sorafenib 
did not significantly increase TTP or overall survival 
over TACE alone. This negative result adds to another 
previous study calling into question the clinical benefits of 
adjuvant sorafenib. A phase Ⅲ trial involving 458 Asian 
patients with HCC in stage B or C found that sorafenib 
did not significantly prolong TTP or overall survival in 
patients who responded to TACE[9]. In addition to non-
efficacy, sorafenib add the incidence of adverse events or 
may worsen outcomes in certain patients[3,7,10].

REASONS OF NEGATIVE RESULTS
These negative results (Table 1) call for caution in the 

adjuvant use of sorafenib. Why the results would be 
negative when our therapeutic aim shifts from control 
of established tumor cells to the eradication of occult 
micrometastases? One reason for caution lies in the 
mechanism of sorafenib, which inhibits tumor angiogenesis. 
Preclinical studies suggest that anti-angiogenic therapy 
can, in principle, increase the likelihood of tumor invasion 
and spread[11], and that tumor angiogenesis can rapidly 
recover when anti-angiogenic therapy is halted[12]. Another 
reason for caution is that sorafenib may not be effective 
against recurrent or metastatic tumors, even if it is 
effective against primary tumors. The two types of tumors 
behave differently, and it is possible that recurrent or 
metastatic tumors are more malignant because they 
were not eliminated by initial therapy (TACE, resection, 
ablation). In fact, studies suggest that sorafenib has poor 
efficacy against intrahepatic metastases (derived from 
the primary tumor) as well as multicentric tumors arising 
spontaneously in the residual liver[7].

While previous works strengthens the arguments 
for re-assessing adjuvant use of sorafenib, some of 
their results should be interpreted with caution. For 
example, the findings of Li et al[6] were based on a very 
small retrospective study; Lencioni et al[8] reported that 
the combination of TACE and sorafenib showed greater 
benefit in Asian patients than in non-Asian ones, yet 
median TTP was nearly the same (24 mo) in Asian 
and non-Asian subgroups as well as the total study 
population[8]. This TTP is substantially longer than the 
5.4 mo reported in another phase Ⅲ trial involving only 
Asian patients[9].

Lack of efficacy with sorafenib has been attributed 
to insufficient duration of therapy[8], such as because 
of delays in starting sorafenib after TACE, as well as to 
insufficient daily sorafenib doses[9]. These explanations 
seem less likely given that all published phase Ⅱ or Ⅲ
multicenter randomized controlled trials concur that 
adjuvant anti-angiogenic agents, including sorafenib, 
are associated with negative TTP, overall survival, or 
recurrence-free survival for solid cancers[7-9,13]. In fact, 
a large dosing study involving 1943 patients with non-
metastatic renal-cell carcinoma supports the notion that 
disease-free survival does not depend on treatment 
duration[13]. 

PERSPECTIVE
The growing evidence for lack of adjuvant sorafenib 
efficacy against HCC[7-9], and substantial evidence against 
adjuvant anti-angiogenic therapy against solid cancers 
in general[13-16], should lead clinicians to re-assess their 
treatment approaches. In this sense, some ongoing trials 
of adjuvant anti-angiogenic agents for solid cancers (e.g., 
NCT00908752, NCT01009801) are already terminated.

Nowadays, more and more trials revealed the definite 
efficacy of postoperative antiviral treatment with nuc­
leot(s)ide analogs for hepatitis B virus-related HCC[17-19]. 
Adjuvant adoptive immunotherapy may also improve 
recurrence-free and overall survival[20]. But more rando­
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mized trials are warranted because of inconsistent findings 
from new randomized trials[21,22]. For HCC patients with 
high risk of recurrence, adjuvant TACE has positive effect 
in terms of improving overall survival[23]. However, each 
postoperative or adjuvant therapy has its own indication, 
revealing that not all patients with HCC after surgery 
should receive specific postoperative or adjuvant therapy. 
New drugs may help further define therapeutic directions 
for the future.
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Abstract
Plasma cholesterol level is determined by a complex 

dynamics that involves transport lipoproteins which 
levels are tightly dependent on how the liver and 
the intestine regulate cholesterol and biliary acid 
metabolism. Regulation of cholesterol and biliary acids 
by the liver and the intestine is in turn coupled to a 
large array of enzymes and transporters that largely 
influence the inflow and the outflow of cholesterol 
and biliary acids through these organs. The activity 
of the key regulators of cholesterol and biliary acids 
may be influenced by several external factors such as 
pharmacological drugs and the nutritional status. In 
recent years, more information has been gathered about 
the impact of estrogens on regulation of cholesterol in 
the body. Exposure to high levels of estrogens has been 
reported to promote cholesterol gallstone formation and 
women are twice as likely as men to develop cholesterol 
gallstones. The impact of estrogen withdrawal, such 
as experienced by menopausal women, is therefore of 
importance and more information on how the absence 
of estrogens influence cholesterol regulation is started to 
come out, especially through the use of animal models. 
An interesting alternative to metabolic deterioration 
due to estrogen deficiency is exercise training. The 
present review is intended to summarize the present 
information that links key regulators of cholesterol 
and biliary acid pathways in liver and intestine to the 
absence of estrogens in an animal model and to discuss 
the potential role of exercise training as an alternative. 

Key words: PSCK9; Low-density lipoprotein receptor; 
Very low-density lipoprotein; Sterol regulatory element 
binding proteins; Ovariectomy; High-density lipoprotein; 
Lipoproteins
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the intestine they control the influx and the efflux of 
cholesterol and biliary acids in the body. Cholesterol 
and its conversion into biliary acids are regulated by 
an extended network of enzymes and transporters 
that largely influence plasma cholesterol levels. The 
key regulators of cholesterol and biliary acids in liver 
and intestine are in turn affected by several factors 
including estrogens levels and more recently exercise 
training. Low estrogenic levels, such as seen in post-
menopausal women, are associated with higher plasma 
cholesterol levels. In recent years more information has 
been accumulated on the extent to which low estrogenic 
levels, such as seen in an ovariectomized animal model, 
influence cholesterol and biliary metabolism at the 
molecular level. As an alternative to a deficiency in estro
gens, exercise training has been reported to exert a 
beneficial effect on these key regulators of cholesterol 
and biliary acids. 

Lavoie JM. Dynamics of hepatic and intestinal cholesterol 
and bile acid pathways: The impact of the animal model of 
estrogen deficiency and exercise training. World J Hepatol 
2016; 8(23): 961-975  Available from: URL: http://www.
wjgnet.com/1948-5182/full/v8/i23/961.htm  DOI: http://dx.doi.
org/10.4254/wjh.v8.i23.961

INTRODUCTION
The importance of estrogens in regulating cholesterol and 
biliary acid metabolism in liver is enlightened by clinical 
studies confirming that women are twice as likely as 
men to develop cholesterol gallstones[1,2]. Oversaturation 
of biliary cholesterol is the requisite defect for the 
formation of gallstones[1]. This pathophysiological state 
is induced by either hypersecretion of biliary cholesterol 
or decreased secretion of bile acids. Therefore, both the 
cholesterol secreted into bile and the bile acids synthetized 
from cholesterol in liver are involved in the disease[3]. 
Exposure to high levels of estrogens has been reported 
to promote cholesterol gallstone formation[4]. Similarly, 
the estrogen receptor α-selective agonist propylpyra
zole and tamoxifen treatment, that have estrogen-
like activity, augment biliary cholesterol secretion in 
mice[4] and increase gallstone prevalence in women[5]. 
On the whole, these findings indicate that there is a 
close relationship between estrogens, cholesterol and 
biliary acid metabolism in liver. This in turn raises the 
question of the extent to which a deficiency in estrogens, 
as happens with menopause, affects cholesterol and 
biliary acid regulation in liver. The first element to take 
into consideration is the fact that estrogen withdrawal in 
animals decreases gene expression of HMGCoA-reductase 
(-r), the rate-limiting enzyme in hepatic cholesterol 
biosynthesis[6]. 

Estrogen-deficient state in Ovx animals has been 
repeatedly reported to result in substantial liver fat 
accumulation indicating that fat metabolism is perturbed 

by the absence of estrogens[7,8]. The information on 
the impact of the absence of estrogens on cholesterol 
metabolism, however, is scarce. An increase in plasma 
cholesterol levels in Ovx rats has been reported 30 
years ago[9,10]. This has been confirmed in more recent 
studies in Ovx animals[6,11] as well as in post-menopausal 
women[12]. The situation of liver cholesterol levels in Ovx 
animals is more controversial. Liver total cholesterol 
level was reported not to be affected by estrogen with
drawal in some studies[11,13] while it has been found to 
be increased in rats ovariectomized for 5-8 wk[14,15]. 
Large cholesterol accumulation has also been found in 
liver of Ovx rats fed with a high-fat diet, that was not 
observed in liver of Ovx rats fed a standard diet and in 
Sham rats fed a high-fat diet[6]. The authors suggested 
a vulnerability to cholesterol accumulation in liver of Ovx 
animals fed a high fat diet. These findings have, at least, 
the merit of raising questions on the impact of the lack 
of estrogens on regulatory pathways involved in liver 
cholesterol metabolism. Cholesterol homeostasis in liver 
depends on cholesterol synthesis, uptake, and clearance. 
One of the aims of the present review is to summarize 
our present knowledge of the extent to which the lack of 
estrogens in an ovariectomized animal model affects the 
regulation of molecular pathways of cholesterol and bile 
acids in liver and intestine.

One of the best non-pharmacological strategies 
for the treatment of metabolic disturbances leading to 
coronary artery disease is exercise training[16,17]. In recent 
years, there has been a fair amount of studies indicating 
that exercise training is also beneficial in circumventing 
the detrimental effects of estrogen removal on metabolic 
pathways involved in liver fat accumulation[18]. Treadmill 
exercise for 12 wk has also been reported to reduce 
plasma low density lipoprotein (LDL)-cholesterol (-C) and 
total cholesterol in Ovx rats[19] while plasma LDL-C was 
decreased in 6-wk trained Ovx rats fed a high fat diet for 
10 mo[20]. Although limited, there is recent information on 
the impact of exercise training on regulation of cholesterol 
pathways in liver and intestine in response to metabolic 
disturbances. For instance there are reports indicating 
an increased fecal cholesterol excretion in exercising 
animals[21]. There is also a recent report of changes with 
exercise training in gene expression of intestinal nuclear 
receptors involved in the defense system against endo
biotic and xenobiotic insults suggesting that regular 
exercise contributes to the intestinal maintenance of 
cholesterol and bile acid homeostasis[22]. In the present 
review, a consideration will be given to the effects of 
exercise training on cholesterol and bile acids pathways, 
especially in the context of estrogens deficiency.

The present review is divided in two large sections 
related respectively to the pathways involved into 
hepatic cholesterol influx and efflux and how estrogen 
deficiency affects key regulators of these pathways. This 
will be followed by a discussion of the known effects of 
exercise training on these pathways.
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HEPATIC CHOLESTEROL INFLUX
Western-type diets provide approximately 400 mg of 
cholesterol per day while our body synthesizes appro
ximately 1 g de novo[23,24]. Hence, blood cholesterol 
levels reflect both dietary and endogenously synthesized 
cholesterol. The liver is a central component in regulation 
of cholesterol metabolism. This organ is able to acquire 
cholesterol through de novo synthesis and from all 
classes of circulating lipoproteins[25]. 

Cholesterol biosynthesis
The total body content of cholesterol is approximately 
100 g, of which approximately 90% are found at the 
cellular levels and 10% in circulation[26]. Cholesterol is 
synthesised virtually in all nucleated cells[27]. For instance, 
the central nervous system contains approximately 
25% of the unesterified cholesterol present in the body 
and it comes almost entirely for in situ synthesis[28]. 
It is assumed that approximately 24% of cholesterol 
synthesis occurs in small intestine of rats and a significant 
fraction of it is transported to liver where nearly 50% 
of total cholesterol synthesis occurs[29]. Cholesterol 
synthesis starts, similarly to de novo lipogenesis, by the 
transfer of acetyl CoA from mitochondria to cytosol. The 
further condensation of three units of acetyl CoA forms 
an HMG-CoA that is transported to the endoplasmic 
reticulum (ER) where it is reduced to melanovate by 
the enzyme HMGCoA-r follows by several steps leading 
to the formation of isoprene, squalene, lanosterol, and 
finally cholesterol. The action of the enzyme HMGCoA-r is 
the rate-limited step in endogenous cholesterol synthesis. 

Regulation of cholesterol biosynthesis: The view 
that cholesterol is randomly distributed within cell 
membrane no longer holds. For instance the distribution 
of lipids and cholesterol in the outer leaflet is organized 
into domains so-called rafts and caveolae playing intri
cate roles to maintain cellular homeostasis[30,31]. On the 
other hand, membranes of the endoplasmic reticulum 
and the Golgi apparatus contain comparatively little 
cholesterol, an important factor in cholesterol homeo
stasis[32]. Maintenance of cholesterol homeostasis is 
orchestrated mainly by a feedback regulatory system 
that senses the level of cholesterol in cell membranes 
and modulates cholesterol biosynthesis and uptake 
from plasma lipoproteins[33]. The molecular mechanism 
of how hepatocytes maintain cholesterol homeostasis 
has become more precise with the discovery of the 
transcription factors sterol regulatory element binding 
proteins (SREBPs)[32]. 

Short-term regulation of the enzyme HMGCoA-r is 
operated by mechanisms such as phosphorylation/de
phosphorylation of the catalytic domain (serine 871) 
by specific kinases (AMPK) and phosphatases (protein 
phosphatase 2A)[34,35]. HMGCoA-r is physiologically 
present in the cell in unphosphorylated active form (30%) 
and phosphorylated inactive form (70%)[36]. 

Long-term regulation of HMGCoA-r relies on syn
thesis and degradation rate of the enzyme. The chole
sterol system is unique in that the regulated end-
product, cholesterol, is sequestered entirely within cell 
membranes. Sterol regulatory elements (SREs) are 
nucleotidic sequences in the gene promoters, encoding 
proteins involved in cholesterol homeostasis such as 
HMGCoA-r and LDL receptor (LDL-R). These sequences 
are recognized by a family of transcription factors called 
SREBP[37]. The SREBP family members, SREBP-1 (a 
and c) and SREBP‑2, are synthetized as membrane pro
tein in the endoplasmic reticulum. 

SREBP-2 is considered to be largely involved in the 
regulation of cholesterol metabolism. In ER, SREBP 
interacts with a cargo protein called SREBP cleavage-
activated protein (SCAP), which acts as a transporter 
and cholesterol sensor[37,38]. The complex formation 
is essential for the exit of SREBPs from the ER and 
subsequent proteolytic activation[39]. The SREBP/SCAP 
containing vesicles from the ER also contain a membrane 
anchored serine protease of the subtilisin family called 
Site-1 protease (SIP-1). Sip becomes activated only 
during its transport to the Golgi[40]. SCAP escorts SREBP 
from the ER to the Golgi apparatus where the SREBPs 
are proteolytically processed by SIP-1 to yield active 
fragments that migrate to the nucleus encoding its target 
genes[33]. To release active SREBP, another enzyme is 
required, Site-2 protease. Interestingly, the nuclear 
action of SREBP induces new SREBP mRNA through SREs 
located in the promoter regions of their own genes[41]. 
When cholesterol builds up in the ER membrane, a 
conformational change in SCAP occurs through the direct 
cholesterol binding to the sterol domain and triggers 
SCAP to bind to Insig, another ER membrane protein[42]. 
This association hampers the transport of the SREBP/
SCAP complex to the Golgi apparatus, resulting in a 
reduced proteolytic activation of precursor SREBP. For 
instance, high dietary cholesterol prevents maturation 
of SREBPs and cuts off cholesterol and LDL receptor 
synthesis. 

Estrogen deficiency and HMGCoA-r regulation: Since 
plasma cholesterol level is increased in Ovx animals[6,11] 
one might expect an increase in cholesterol synthesis. 
However, HMGCoA-r mRNA secondary to Ovx was found 
to be decreased in several studies in rats[6,11,43,44] and 
in mice fed a high-fat high-cholesterol diet[13]. Along with 
HMGCoA-r, gene expression of SREBP-2, the trans
cription factor involved in the regulation of HMGCoA-r, 
was also decreased in Ovx animals[14,43]. On the oppo
site, an increase in HMGCoA-r protein content has 
been reported in frog and rat after 5 d of estrogen ad
ministration[45,46]. On the whole these results strongly 
suggest that an increased cholesterol biosynthesis 
is not responsible for the increased higher plasma 
cholesterol found with estrogen deficiency in animals 
and in post-menopausal women. They also suggest an 
accumulation of cholesterol in the ER membrane.
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Receptors involved in hepatic uptake of cholesterol 
from lipoproteins
Lipoprotein remnant receptors: Upon completion 
of hydrolysis (approximately 50% of TG removal) chy
lomicrons and VLDL lose affinity for lipoprotein lipase 
(LPL) and dissociate[47]. The apoproteins A1 and C are 
then transferred to high-density lipoprotein (HDL) in 
exchange for apo E upon what they are then called 
chylomicrons and VLDL remnants[48,49]. The acquisition 
of apo E is crucial since it will serve eventually as ligands 
for receptor mediated clearance. Intermediate density 
lipoproteins (IDL) which are VLDLs that interact for 
prolonged period with LPL are also remnants particles. 
The remnant lipoproteins are then small enough to enter 
the space of Disse. Once into the space of Disse, remnant 
lipoproteins small enough to fit between the endothelial 
cells are sequestrated by high-molecular-weight heparin 
proteoglycan (HSPG) molecules. Within the space of Disse 
the particles are remodeled by hepatic lipase. Final uptake 
by the hepatocytes is receptor mediated that include 
LDL-R, LDL related protein (LRP), a complex LRP-HSPG or 
HSPG alone[25,50]. These mechanisms are efficient so that 
half-life of remnants in plasma is 30 min. The apoB-48 
containing chylomicron remnants are completely cleared 
from the plasma. However the presence of apoB-100 in 
VLDL alters their metabolism so that only 50% of VLDL 
remnants are cleared by lipoproteins remnant receptors.

Receptors involved in hepatic uptake of LDL-
cholesterol: VLDL remnants that are not taken up by 
the remnant receptors are metabolized to a greater 
extent by LPL, become increasing smaller, relatively 
deficient in TG and enriched in cholesterol esters. These 
particles are called IDL. Because IDL contains apoE 
a fraction of these particles may be taken up by the 
liver through the remnant receptors[51]. However, the 
remainder will be changed to LDL following further 
hydrolysis of the TG by the hepatic lipase. The apoE 
and apoC-Ⅱ molecules will then transfer to HDL and 
leave apoB as their only apolipoprotein[52]. The LDL-R 
is the only receptor able to clear up LDL from the cir
culation. Because of the lack of apoE, the LDL particle 
is a relatively weak ligand for the LDL receptor[53]. As a 
result, the half-life of the LDL particle is relatively long 
(two to four days) thus accounting for 65%-75% of total 
plasma cholesterol. Interaction of apoB with the LDL-R 
facilitates the internalisation and the further degradation 
of LDL[53]. Inside the cell, the LDL particle is hydrolysed to 
release unesterified cholesterol. The LDL-R is expressed 
on the cell surface of several tissues including liver, 
macrophages, lymphocytes, adrenal cortex, gonads, and 
smooth muscle[25]. 

Metabolism of the LDL-R: The LDL-R is a cell surface 
receptor that mediates specific uptake and catabolism 
of plasma lipoproteins containing apoB or apoE[53]. 
The primary function of this receptor is the removal 
of highly atherogenic LDL particles from circulation[53]. 
Since the liver contains approximately 70% of total 

LDL-R found in the body[54], hepatic LDL-R activity is an 
important contributor to regulation of plasma cholesterol 
LDL levels. The LDL-R activity is downregulated post-
transcriptionnally by a protease, proprotein convertase 
subtilisin kexin type 9 (PCSK9)[55]. PCSK9 is highly ex
pressed in liver and intestine[56]. However, circulating 
PCSK9 originates exclusively from hepatocytes[57]. The gene 
expressions of LDL-R and PCSK9 as well as HMGCoA-r 
are regulated by a transcription factor, SREBP-2[58]. 
Within the endoplasmic reticulum, PCSK9 undergoes 
an auto catalytic cleavage[56] that results in a tightly 
bound secretable heterodimeric complex[59]. PCSK9 is, 
therefore, readily measured in plasma. PCSK9 binds to 
the LDL-R at the surface of the hepatocytes and/or within 
the cell[60]. LDL-R is then directed from the cell surface 
recycling toward degradation in the endosome/lysosome 
pathway[61]. Mutations leading to a loss of function or 
genetic invalidation of PCSK9 largely reduce circulating 
LDL-C levels and reduce cardiovascular events (88%) in 
humans (for a review see[60]). 

The co-regulation of PCSK9 and HMGCoA-r by the 
same transcription factor has consequences. As discussed 
by Poirier et al[60], statins that lower LDL-C by inhibiting 
HMGCoA-r also increase the expression of PCSK9[62] 
which decreases their capacity at increasing LDL-R. This 
may explain why LDL-C levels do not reach therapeutic 
goals in many patients with statins therapy. Hepatocyte 
nuclear factor 1 alpha, a key mediator of the effects of 
bile acids on gene expression, also regulates PCSK9[63]. 

Estrogen deficiency and LDL-R: In line with the 
reduction in HMGCoA-r, gene expression of hepatic LDL-R 
has been repeatedly reported to be reduced in Ovx 
animals[11,13,14,43,64]. Along with LDL-R, PCSK9 transcripts 
in liver and PCSK9 plasma levels have also been shown 
to be reduced in Ovx rats[14]. These results concord with 
the reports that estrogens administration upregulates 
LDL-R gene expression in rat liver[46,65]. In a recent 
study, Roubtsova et al[66] showed, using PCSK9 KO mice, 
that the interaction between PCSK9 and LDL-R was 
sex-specific, thus depending on estrogens. The similar 
decrease in PCSK9 and LDL-R in Ovx animals is, however, 
puzzling considering that a decrease in PCSK9 should 
lead to an increase in LDL-R. It has been proposed that 
the rate of cycling of hepatic LDL-R on cell surface might 
be an explanation. When hepatic cholesterol increases, 
as it is observed in Ovx animals[11,14], the transcriptional 
regulation of PCSK9 and LDL-R both mediated by 
SREBP-2 would be inhibited, and the rate of cycling 
of the hepatic LDL-R slowed down leading to higher 
levels in circulating LDL-cholesterol. The transcriptional 
regulation of the LDL-R is, however, paradoxical since 
SREBP-2 also regulates the transcription of PCSK9, thus 
leading to two opposing effects initiated by the same 
signal. In a recent publication, Starr et al[67] proposed 
a more dynamic role for PCSK9, suggesting that pho
sphorylated PCSK9 promotes degradation of LDL-R, 
whereas nonphosphorylated PCSK9 is in an LDL-R-
protective state. Taken together, these results emphasize 
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the need to a better understanding of the sex specific 
interaction between LDL-R and PCSK9, especially in view 
of a new class of cholesterol lowering drugs, the PCSK9 
inhibitors[68].

Metabolism of the LRP1 receptor: LRP1 is a member 
of the LDL-R gene family which also includes receptors 
such as LRP2 (megalin), LRP8 (apoE receptor 2), and 
the VLDL receptor (VLDLR)[69]. LRP1 is expressed in 
several types of cells including hepatocytes, fibroblasts, 
smooth muscle cells, and neurons[70]. This transmem
brane protein displays both scavenging and signaling 
functions. LRP1 mediates removal of at least 30 dif
ferent ligands, including VLDL remnants or IDL and 
chylomicron remnants from the circulation[71], but also 
several molecules unrelated to lipid homeostasis including 
proteases, protease inhibitor complexes, extracellular 
matrix proteins, growth factors, toxins, and viral pro
teins[72]. LRP1 also acts as an endocytic receptor for 
several intracellular proteins released by necrotic cells, 
which failure to be efficiency cleared may be associated 
with the onset of autoimmune disease[73,74]. Interestingly, 
LRP1, by regulating cell signaling through several mech
anisms, may change the activity of other receptors 
by controlling the abundance of these receptors in the 
plasma membrane[75]. For instance, disruption of the LRP 
gene in adult normal mice resulted in a compensatory 
upregulation of the LDL-R in the liver[76]. 

The gene expression of LRP1 is complex and appears 
to be regulated by hormones and growth factors[77]. 
LRP1, as well as other members of the LDL-R family, 
are bound by a molecule called receptor-associated 
protein (RAP) that blocks the bindings of ligands to these 
receptors[78]. RAP functions as a molecular chaperone 
that assists in the trafficking of the LRP1 to the cell 
surface[79]. In different tissues, LRP1 gene expres
sion has been reported to be affected by factors such 
as hypercholesterolemia, lipopolysaccharides, growth 
factors, and hypoxia (for a review see[80]). Hepatic LRP1 
expression has been reported to be negatively associated 
with intracellular cholesterol level and positively asso
ciated with expression of SREBP-2[81]. On the whole, 
LRP1 may be seen as a complex biosensor allowing the 
cells to answer to micro-environmental variations[80]. 

Estrogen deficiency and LRP1receptor: A reduction 
in gene expression of LRP1 in Ovx rats was first reported 
by Ngo Sock et al[14] and confirmed in recent studies 
at the protein levels[15]. This decrease in LRP1 in Ovx 
animals may be associated with the decrease in the 
SREBP-2 transcription factor[81]. Interestingly, it has 
been recently reported that LRP1 is also a target for 
PCSK9 in HepG2 cells[82]. These authors postulated that 
LDL-R can effectively compete with LRP1 for PCSK9 
activity. A reduction in LRP1 gene expression could 
contribute to the increase in plasma cholesterol in Ovx 
rats by reducing the uptake of circulating lipoprotein 
remnants. Finally, inducible degrader of the low-density 
lipoprotein receptor an ubiquitin ligase that also me

diates the degradation of the LDL-R was found not to be 
affected by an ovariectomy[66]. 

VLDLR
In addition to LRP, the LDL-R gene family includes a 
further member that functions as receptor for VLDL[83]. 
The VLDLR is expressed in several tissues including 
heart, muscle, adipose tissue, and macrophages but 
barely detectable in liver under normal conditions[83,84]. 
This receptor has been suggested to be important for 
the metabolism of apoE-containing triacylglycerol-rich 
lipoproteins, such as VLDL and IDL. 

Interestingly, circulating PCSK9 originating from liver 
can regulate VLDLR in adipose tissue, which tissue does 
not express PCSK9[57]. In that manner, the absence 
of circulating PCSK9 resulted in an increase in the 
level of surface of VLDLR in the perigonadal tissue[57]. 
Interestingly, the increase was 10 times higher in female 
than in male mice[57]. This response was in line with the 
typical female pattern in mice that implies a high surface 
VLDLR levels in perigonadal fat and low surface LDLR 
levels in hepatocytes[66]. 

Hepatic cholesterol uptake from HDL
HDL is a class of lipoproteins that is able to remove 
excess cholesterol from cells and transport it through 
plasma to the liver. The apoA1 is the major structural 
determinant of HDL. It is involved in the formation as well 
as in the interaction with its receptor, scavenger receptor 
class B, type 1 (SR-B1)[85]. HDL formation occurs mainly 
in the liver and to a lesser extent in the intestine[85]. The 
events start when lipid-poor apoA1 is secreted by the 
liver or the intestine[86] or dissociates from lipoprotein 
particles in the plasma[87]. ApoA1 interacts with the 
membrane-embedded ATP binding cassette A1 (ABCA1) 
and incorporates small amount of phospholipids and 
unesterified cholesterol into the apoA1 molecule[88]. 
Maturation of these preβHDL in the plasma occurs due 
two enzymes, lecithin: Cholesterol acyl transferase (LCAT) 
that esterifies cholesterol and phospholipid transfer 
protein (PLTP) that transfers phospholipids from remnant 
particles to HDL. 

HDLs have the ability of removing excess choleste
rol from cells. The first mechanism involved the action 
of preβHDL interacting with ABCA1 that in addition of 
forming a new HDL by the liver is used to remove excess 
cholesterol from macrophages[89]. Spherical mature HDL 
may remove cholesterol from cells using several mec
hanisms. The particle may interact with SR-B1 on the 
plasma membrane. Macrophages also express ABCG1 
transporters that mediate transfer of excess cholesterol to 
HDL. Finally excess cholesterol from cells may also efflux 
in absence of binding to transport protein, travels short 
distance through plasma and be taken up by HDL[25]. The 
activity of LCAT and PLTP prevents the HDL from being 
saturated with cholesterol. The enzyme cholesterol ester 
transfer protein (CETP) that transfer cholesteryl ester 
molecules from HDL to remnant particles in exchange 
for TG also increases the capacity of HDL to accept 
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unesterified cholesterol from cells.
HDLs circulating to the liver interact with SR-B1 the 

main HDL receptor[90]. SR-B1 in the liver facilitates the 
uptake of cholesterol and cholesterol esters from the 
HDL particle without the apoA1[86]. ApoA1 may then be 
recycled to form a new preβHDL. The action of SR-B1 is 
facilitated by the hydrolysis of TG by the hepatic lipase. 
The adrenal gland and gonads also highly express SR-B1 
most likely due to their requirement in cholesterol[86]. 

HDLs are considered limiting for the reverse cho
lesterol transport because it is assumed that they deliver 
peripheral cholesterol to the liver for biliary secretion 
and eventually fecal excretion[91,92]. As discussed by Temel 
and Brown[93], however, there is evidence that HDL-driven 
cholesterol efflux does not correlate with how much is lost 
in bile or in the feces. Mice genetically lacking ApoA1 or 
ABCA1 and, therefore having very low circulating levels of 
HDL, or showing different steady-state concentrations of 
HDL-C have normal biliary and fecal cholesterol loss[94,95]. 
Some authors argue that apoB-containing lipoproteins 
and particularly the activity of CETP play a substantial 
role in reverse cholesterol transport[96].

Estrogen deficiency and hepatic HDL receptor: 
SR-B1 mRNA in liver that allows the return of choles
terol to liver via HDL was reported to be higher in Ovx 
compared to Sham rats[14]. Interestingly, ABCA1 gene 
expression, involved in biosynthesis of nascent HDL was 
also found to be increased in Ovx rats[14]. An increase in 
gene expression of ABCA1 was also found in jejunum of 
Ovx rats[14]. Although limited, these findings point to the 
direction as if the hepatic contribution to HDL metabolism 
was increased with estrogen withdrawal. 

HEPATIC CHOLESTEROL EFFLUX
There are essentially two ways by which liver can excrete 
cholesterol: (1) secretion of unmodified cholesterol or 
after its transformation in bile salts into bile caniculi; and 
(2) through VLDL secretion.

Hepatic cholesterol-bile acid metabolism
The liver is the only organ that has ability to eliminate 
cholesterol through its secretion into bile or its trans
formation into bile salts. Bile acids synthesis from 
cholesterol is stimulated by the nuclear factor liver X 
receptor (LXR) through its target gene cytochrome 
P450, family 7, subfamily a, polypeptide 1 (CYP7A1), 
the main enzyme in the conversion of cholesterol into 
bile acids[97]. The synthesis of a full complement of 
bile acids requires 17 enzymes[98]. The bile acid pool 
size is reduced by 75% in mice deficient in CYP7A1[99]. 
An alternative biosynthetic pathway is initiated by the 
enzyme cholesterol 27α-hydroxylase (Cyp27α1[99]). Bile 
salts are highly soluble in water. They form aggregate 
with phospholipids derived from hepatocyte membranes 
and solubilize cholesterol in bile for transport from liver 
to intestine[100]. Nuclear factor farnesoid X receptor (FXR) 
activated by bile acids, stimulates bile and cholesterol 

efflux from liver. Opposite to LXR, FXR suppresses bile 
acids synthesis by inhibiting Cyp7A1. At the canalicular 
membrane of the hepatocytes, bile salts are pump into 
bile by a membrane transporter, ABCB11, also referred 
to as bile salt export pump (BSEP) and to a lesser extent 
by the multidrug resistance-associated protein 2 (MDR2; 
ABCC2[101]), which activates two other transporters, 
ABCB4 involved in the transport of phospholipids and 
ABCG5/G8 a heterodimer involved in the secretion of 
cholesterol[102-104]. Alternative mechanisms to ABCG5/G8 
cholesterol secretion involve ATP8B1 and diffusion[105]. 
Altogether bile salts and phospholipids form micelles 
which are stored in the gall bladder during fasting. In 
addition, bile salts may be exported to the blood at the 
sinusoidal membrane mediated by MRP3 (ABCC3) and 
MRP4 (ABCC4), as well as the organic solute transporter 
OST α/β[106]. Conversion of cholesterol to bile salts 
accounts for about 50% of daily cholesterol excretion[107]. 

Estrogen deficiency and hepatic cholesterol-bile 
acid metabolism: Cyp7A1and Cyp8b1 transcripts 
have been reported to be decreased in Ovx rats and 
mice[6,11,13,43] suggesting a reduction in cholesterol elimi
nation via bile acid formation. This decrease has been 
found in Ovx rats fed a standard diet and even more 
so when Ovx rats were fed a high-fat (42%) diet[6]. On 
the opposite, estrogen treatment has been reported to 
result in an increase in biliary cholesterol hypersecretion 
in mice[4]. 

Estrogen deficiency was associated with lower 
transcript levels of BSEP and MDR2 suggesting that, 
in addition to synthesis, excretion of bile acids from 
hepatocytes to caniculi was decreased in Ovx rats[15,43]. 
Furthermore, the gene expression of nuclear receptors 
FXR and LXR was found to be lower in Ovx compared 
to Sham animals[43]. The decrease in gene expression 
of FXR suggests that bile acids did not accumulate in 
liver of Ovx rats. FXR mRNA levels are controlled by bile 
acids[108]. The specific role of hepatic FXR is to prevent 
bile acid hepato-toxicity by initiating the expression of 
a gene network involved in the synthesis and excretion 
of bile acids. Accordingly, FXR-null mice show massive 
accumulation of cholesterol in hepatocytes[109]. The in
dication that bile acid metabolism is disrupted in Ovx 
rats may in turn favours cholesterol accumulation in liver 
since bile acid secretion exerts a driven force for biliary 
cholesterol excretion[110]. Supporting the hypothesis 
that biliary metabolic pathways are indeed disrupted 
in Ovx animals is the finding of a decrease in total bile 
production in Ovx rats[111].

Gene expression of ABCG5/G8 transporters involved 
in exportation of cholesterol from the liver to the bile 
ducts was unchanged in Ovx compared to Sham rats[6,15,43] 
and in aromatase knockout mice[112] suggesting that 
these transporters are not regulated by estrogens. 

Hepatic excretion of cholesterol through VLDL
VLDL assembly in liver is initiated by the entry of 
apoB100 in the lumen of the endoplasmic reticulum[113]. 
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The apoB protein is lipidated by the action of micro
somal transfer protein (MTP) accumulating TG as well 
as cholesterol esters molecules. Besides MTP and 
apoB100, other molecular markers of VLDL assembly 
include diacylglycerol acyltransferase 2 (DGAT2), 
involved in the reesterification of TG[114], and acyl-CoA: 
Cholesterol acyltransferase 2 (ACAT2) that converts 
free cholesterol into cholesterol esters[115]. Further 
lipidation of the VLDL particles after they exit the 
endoplasmic reticulum compartment is carried on by a 
lipid droplet-associated protein, cell death-inducing DNA 
fragmentation factor alpha-like-effector B (Cideb)[116]. 
The importance of Cideb has been enlightened by the 
finding of a reduction in plasma LDL levels in Cideb-
null mice[117]. However, hepatic cholesterol storage was 
increased in liver of these animals due to its increased 
LDL-R and ACAT expression. Finally, small GTP binding 
protein (Sar1a), an intracellular vesicular trafficking 
protein, facilitates the movements of VLDL particles 
between the endoplasmic reticulum and the Golgi 
apparatus where they are secreted in the plasma. 

Estrogen deficiency and hepatic VLDL metabolism: 
The observation that plasma cholesterol level is in
creased in Ovx animals[6,11] might suggest an increased 
cholesterol excretion through VLDL. On the opposite, 
a decrease in VLDL-TG production has been reported 
in estrogen-deficient animals[118,119]. Supporting such a 
decrease in VLDL production at the molecular level is 
the repeatedly reported decrease in gene expression of 
MTP, the rate-limiting molecule for VLDL assembly and 
secretion, in Ovx animals[15,43,118]. Transcripts of other 
genes involved in VLDL synthesis, including apoB, DGAT2, 
ACAT2, Cideb, and Sar1a have also been reported to be 
decreased in Ovx rats fed a standard diet[15,43] and even 
more so for some genes (MTP and apoB100) in Ovx rats 
fed an enriched-cholesterol diet[15]. The additive effect 
of estrogen withdrawal and high-cholesterol diet on 
reducing markers of VLDL production was corroborated 
by an accumulation of total cholesterol and TG in liver 
and lower levels of these two forms of lipids in plasma[15]. 
In search of an explanation for the postulated reduced 
VLDL production in Ovx rats fed the cholesterol diet, 
it has been suggested that cholesterol may induce ER 
stress through cholesterol accumulation[120] and that ER 
stress limits VLDL assembly and secretion through apoB 
degradation[121]. Collectively, these results points toward 
the interpretation that VLDL assembly is disrupted upon 
ovariectomy leading to reduced excretion of TG and 
cholesterol from the liver, thus contributing to exacerbate 
liver fat and cholesterol accumulation[14,15].

Molecular mechanisms by which estrogens regulate 
transcription of target genes involved in VLDL pathway 
are not well known. The classical genomic mechanism 
of estrogen action involves activation of its nuclear 
receptor (ERα and β) and subsequent binding to estrogen 
response elements located in the promoters of target 
genes[122,123]. Estrogens have also been shown to have 
non-genomic actions mediated through a subpopulation 

of ERα and β located at the plasma membrane[124]. It is 
thus possible that estrogens affect expression of target 
genes involved in different metabolic pathways through 
interaction in the nucleus and/or activation of signal 
transduction pathways at the plasma membrane. 

Intestinal excretion of biliary cholesterol
As mentioned above, hepatic cholesterol is secreted into 
bile unmodified or after its conversion into bile salts. 
These bile salts participate in cholesterol transport and 
eventually in fat digestion in the intestine. However, 
rather than being lost in the feces, most of the bile 
salts are recycled when they are taken up by transport 
proteins in the distal ileum. FXR controls the absorption 
of bile acids in the intestine through the regulation of 
bile acid transporters from the intestine to the portal 
system[125]. These include apical sodium-dependent 
bile acid transporter, the ileal bile acid binding protein, 
and at the basolateral membrane of enterocytes the 
heterodimeric organite solute transporters α and β (OSTα, 
OSTβ)[126,127]. Bile salts picked up by these transporters 
enter the portal circulation and are transported back to 
the liver where they are eventually re-secreted into bile. 
This process of recycling back the bile salts between the 
intestine and the liver is called the enterohepatic circula
tion[128]. The Na+-taurocholate cotransporting polype
ptide (NTCP) is the major uptake system to transport 
bile salts from the blood into parenchymal cells[129]. 
Together with several organic anions transporting poly
peptide, it controls bile salt uptake at the sinusoidal 
membrane[130]. Bile salt accumulation down-regulates 
NTCP at the transcriptional level mediated by FXR and 
the short heterodimer partner 1[131].

Less than 10% of transported bile salts are lost in the 
feces (0.4 g/d)[132]. Therefore, dietary cholesterol (0.4 g/d) 
constitutes only 25% compared to endogenous cho
lesterol (1.2 g/d) that passes through intestine in one 
day[133]. Coordination between intestinal bile acids levels 
and hepatic bile acids biosynthesis is assured through 
the intestinal secretion of fibroblast growth factor 15/19 
that inhibits Cyp7α1 in liver under FXR activation[134].

Excretion of intestinal absorbed cholesterol: The 
cellular mechanisms by which chylomicrons in the in
testine and VLDL in the liver are assembly are very 
similar. Their assembly depends of the availability of 
apoB, triglycerides, and the TG transfer protein MTP. 
However, opposite to liver, enterocytes express a protein 
called apoB editing complex-1[135]. As a result of the 
action of this enzyme, translation of apoB comes to 
a premature stop making intestinal apoB in the intes
tine 48% as long as the protein expressed in the liver 
(apoB100). Cholesteryl esters added to the core molecule 
of chylomicrons come from biliary acids (75%) and from 
dietary sources. During digestion, cholesteryl esters in 
food are hydrolyzed to form unesterified cholesterol[136]. 
Dietary and biliary cholesterol from micelles enter 
the enterocytes mainly (80%) via a protein channel, 
Neimann-Pick C-1 like 1 protein (NPC1L1)[137]. Some of 
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this cholesterol is immediately pumped back into the 
lumen by the heterodimer transporter ABCG5/G8[138]. A 
portion of cholesterol is also transferred to apoA1 by the 
ABCA1 transporter to form a nascent HDL. The fraction 
of cholesterol remaining is esterified to a long-chain fatty 
acid by ACAT2[139]. 

Estrogen deficiency and intestinal bile acid-
cholesterol metabolism: The information is rather 
limited in regard to biliary cholesterol metabolism in the 
intestine. A greater faecal excretion of bile acids has been 
reported in Ovx rats[11]. The authors explain this response 
by suggesting a decreased reabsorption of bile acids from 
the ileum through a decrease in bile acid transporters. 
Gene expression of NTCP, the major uptake system to 
transport bile salts from the blood into parenchymal cells, 
was found to be unchanged in Ovx compared to Sham 
rats[15]. On the other hand, gene expression of ABCA1 
was reported to be increased in jejunum of Ovx rats, 
suggesting an increased efflux of intestinal cholesterol 
through HDL synthesis in Ovx animals[14]. 

Transintestinal cholesterol excretion
The hepatobiliary pathway also referred to as the 
reverse cholesterol transport pathway is considered the 
major elimination cholesterol route. Nevertheless, fecal 
cholesterol excretion was observed in several states of 
disturbances in cholesterol biliary excretion supporting the 
existence of a new route for cholesterol excretion[140-142]. 
In other words, a large part of the cholesterol found in 
the feces originates from a source other than bile and 
diet. The non-biliary alternative called the transintestinal 
cholesterol excretion pathway implies the direct secretion 
of plasma lipoprotein-derived cholesterol by the small 
intestine[94,143,144]. Among the numerous studies on trans
intestinal cholesterol excretion (TICE), there is some 
agreement that under normal conditions TICE contributes 
to less than 30% of cholesterol found in the feces (for 
a review see[93]). However, the TICE pathway may be 
stimulated under pathophysiological or pharmacological 
conditions. For instance, intestinal cholesterol excretion 
is inducible by a high-fat diet[145] or pharmacologically by 
ligands of LXR[146]. The importance of the role of TICE has 
been recently highlighted by the demonstration that TICE 
is essential to macrophage reverse cholesterol transport 
in mice[142].

It seems that the liver initiates the activation of the 
TICE[93]. Findings in mice with impaired hepatobiliary 
cholesterol excretion indicate that cholesterol is first 
transported to the liver before being delivered to the 
intestine[93]. Temel and Brown[93] summarized evidence 
that indicate that it is the subsequent steps within the 
liver that determine the amount of cholesterol eliminated 
through the biliary and non-biliary excretory mechanism. 
The excess cholesterol is most likely repacked into 
apoB rich lipoproteins secreted by the liver. These liver-
derived apoB-containing lipoproteins are recognized by 
the proximal small intestine through LDL-R and probably 

other mechanisms[147]. Le May et al[147] provided data 
suggesting that PCSK9 is a repressor of TICE dependent 
on the LDL-R. They also demonstrated that both LDL 
and HDL (possibly through SR-B1 transporter) provided 
cholesterol to TICE. Once the free cholesterol is liberated 
from the TICE lipoproteins, it may efflux from the apical 
side of the enterocyte through the ABCG5/G8 trans
porters or the multidrug transporter ABCG1a/b[93]. 

EFFECTS OF EXERCISE TRAINING ON 
LIVER AND INTESTINAL CHOLESTEROL 
METABOLISM 
The main finding supporting the contention that exercise 
training improves lipid and cholesterol metabolism is 
the reported increase in plasma HDL levels and the 
concomitant decrease in LDL-cholesterol and triglycerides 
in human studies[148,149]. In animals, positive effects of 
exercise training on the outcome of disturbances in lipid 
and cholesterol metabolism has been demonstrated 
by Ramachandran et al[150] who reported a 50% 
reduction in pre-existing atherosclerotic lesions in LDL-R 
KO mice. Similarly, Matsumoto et al[151] reported that 
exercise training in LDL-R KO mice prevented aortic 
valve sclerosis. These authors specified that exercise 
exerted several numerous favourable effects that include 
preservation of valvular endothelial integrity, reduced 
recruitment of inflammatory cells, and oxidative stress. 
A decrease in aortic lesion size was also reported by 
Meissner et al[21] after 12 wk of voluntary running wheel 
in LDL-R deficient mice. 

However, as mentioned by Meissner et al[152], the 
molecular pathways behind such exercise-induced im
provements in plasma lipids are not well defined. In 
addition, the analysis of the effects of exercise training on 
the molecular components of cholesterol metabolism in 
liver is complicated by the variety of animal models used.

HMGCoA-r and exercise training
There is a paucity of information on the effects of exercise 
training on cholesterol biosynthesis. Ngo Sock et al[14] 
reported that training (8 wk) did not appear to have any 
effect on HMGCoA-r as well as on SREBP-2 transcripts 
whether in Sham or in Ovx rats. Previously, Meissner 
et al[152] reported an increase in lanosterol/cholesterol 
ratio in mice submitted to two weeks of voluntary exercise 
suggesting an increase in cholesterol biosynthesis. How
ever, the same group of authors reported a decrease 
in HMGCoA-r after 12 wk of voluntary wheel running in 
LDL-R deficient mice[21]. On the whole, there is no clear 
indication that hepatic cholesterol biosynthesis is changed 
with exercise training.

LDL-R and exercise training
Using CETP transgenic mice, an animal model that simu
lates reverse cholesterol transport (RCT) in human, 
Rocco et al[153] found an increase in hepatic LDL-R protein 
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levels following 6 wk of treadmill exercise. Using this 
animal model they also found that exercise training 
improved macrophage RCT. An increase in LDL-R gene 
expression in liver of normal mice exercised for two 
weeks had been previously found[154]. At the same time, 
Wilund et al[155] reported an increase in LDL-R gene ex
pression and a reduction in gallstone development in 
gallstone-sensitive mice fed a lithogenic diet after 12 wk 
of exercise training. 

In a recent study, Wen et al[156] found that treadmill 
exercise for 8 wk resulted in an increase in PCSK9, 
LDL-R, and SREBP-2 mRNA in high-fat fed mice. On the 
other hand, they found a reduction in plasma PCSK9 
levels and no difference in LDL-R protein abundance. 
They attributed these latter responses to the lower 
levels of circulating LDL-C in trained animals. 

In other respects, exercise training (8 wk) did not 
alter LDL-R, PCSK9, and LRP1 gene expression in Sham 
rats as well as being ineffective in correcting reductions 
in these molecular markers in Ovx rats[14]. On the oppo
site, Pinto et al[157] recently reported an increase in LDL-R 
protein levels in male mice trained for 6 wk. Taken 
together, there is indication that exercise training may 
favour liver cholesterol uptake from circulation through 
LDL-R thus, supporting the general finding of a reduction 
in circulating LDL-C in human[149]. 

HDL metabolism and exercise training
Exercise training (8 wk) did not influence SR-B1 and 
ABCA1 responses in Sham as well as in Ovx rats[14]. On 
the other hand, an increase in ABCA1 mRNA had pre
viously been reported following 6 wk of treadmill exercise 
in rats accompanied by an increase in plasma HDL-C 
concentration[158].

Two weeks of exercise training resulted in an increase 
in SR-B1 in livers of exercised mice[154]. Wilund et al[155] 
also reported an increase in SR-B1 gene expression 
and a reduction in gallstone development in gallstone-
sensitive mice fed a lithogenic diet after 12 wk of exercise 
training. An increase in SR-B1 protein level in liver has 
also been reported in male mice trained for 6 wk along 
with the demonstration of an increased macrophage 
cholesterol flux to the liver[157].

 In CETP transgenic mice, Rocco et al[153] found an 
increase in hepatic ABCA1 protein levels following 6 wk of 
treadmill exercise but no effects on SR-B1. On the whole, 
it appears that exercise training stimulates positive 
adaptations of molecular markers of HDL metabolism 
that would tend to support the finding of an increase 
circulating HDL levels with exercise training in human[149]. 

Bile acids and exercise training
Wilund et al[155] reported an increase in gene expression 
of Cyp27A1 in mice fed a lithogenic diet after 12 wk of 
exercise training. On the opposite, Meissner et al[21,152] 
did not observe any effects of exercise on key genes 
expression involved in bile acid synthesis (CYP7A1, CYP8B1, 
and CYP27A1) in mice despite an increased fecal bile acid 
and cholesterol excretion, leading the authors to assume 

a posttranscriptional regulation of these genes. The 
authors hypothesized that physical activity might increase 
bile acid synthesis to increase the capacity for micelle 
formation, thus increasing fatty acid absorption[21]. More 
recently, Pinto et al[157] reported an increase in CYP7A1 
gene expression in male mice trained for 6 wk. On the 
whole the existing molecular data would tend to support 
the physiological finding of an increase in fecal bile acid 
and cholesterol excretion in exercise trained animals.

VLDL and exercise training
There is a report that VLDL-TG secretion rate is reduced 
in human following exercise training[159]. A decrease in 
VLDL-TG accumulation and apoB mRNA after exercise 
training has also been reported in male Wistar rats[160]. 
Accordingly, liver MTP protein content has been found 
to be decreased with exercise training in mice[21] and 
in standard and high-fat fed female Sprague-Dawley 
strain rats[161]. Since liver fat accumulation is reduced 
with exercise training[162], the latter authors argue that 
the reduced liver VLDL production induced by regular 
exercise is a consequence of an increased lipid disposal 
through oxidation[163]. It is also possible that an increased 
hepatic insulin sensitivity following exercise training may 
have resulted in a decrease in VLDL-TG synthesis and 
secretion. It is well documented that insulin suppresses 
the secretion of VLDL particles by the liver[164] and MTP 
gene expression has been reported to be reduced by 
insulin in culture liver cells[165]. 

Plasma VLDL-TG levels have also been reported to 
be reduced following exercise training in Ovx rats for 
which VLDL-TG levels were already reduced[118]. This sug
gests that the effects of exercise training and estrogen 
withdrawal on VLDL-TG synthesis and/or secretion are 
additive and most likely take place through different 
pathways. On the other hand, the reduction in VLDL-TG 
production with exercise training in Ovx rats did not result 
in an accumulation of liver TG[118]. This was explained by 
the fact that exercise training increases the use of lipids, 
therefore, reducing fat delivery to the liver.

Intestinal markers and exercise training
Gene expression of ABCA1 was reported to be increased 
in jejunum of Ovx rats but unchanged by exercise train
ing (8 wk)[14]. On the other hand, the same group of 
authors found an increase in ABCA1 in ileum of 8-wk 
trained rats[22]. An increase in ABCA1 mRNA in the upper 
part of the small intestine in Wistar rats trained for 6 
wk had been previously reported[166]. Although limited, 
these findings concord with what has been found in liver 
and suggest that HDL synthesis from the intestine is 
increased following exercise training. 

Wilund et al[155] found a decrease in NPC1L1 and 
ABCG5/G8 gene expression in duodenum of mice after 
12 wk of exercise training. The authors explain that 
the reduction in ABCG5/G8 might have been the conse
quence of the reduction in NPC1L1 and less cholesterol 
transported into the enterocytes. A decrease in NPC1L1 
and ABCG5/G8 was also recently reported in the ileum of 
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8-wk trained rats[22]. 
On the other hand, Meissner et al[152] reported an 

increase in fecal bile and cholesterol loss and a decrease 
in jejunal NPC1L1, suggesting a decrease intestinal 
cholesterol absorption, in male mice submitted to 
voluntary exercise for two weeks. Running mice also 
displayed lower ileal OSTα, OSTβ, and NTCP transpor
ters, all involved in the enterohepatic circulation of bile 
acids. However, running did not affect mRNA levels 
of cholesterol efflux ABCG5/G8 in jejunum. On the 
whole these authors[152] reached the conclusion of an 
increase cholesterol turnover with regular exercise. In a 
subsequent study, Meissner et al[21] found a massive fecal 
bile acid loss in hypercholesterolemic LDL-R deficient 
mice trained for 12 wk. Decreases in ileal OSTα and 
OSTβ mRNA have also been reported in 8-wk trained 
rats along with a decrease in FXR transcription factor 
indicating that the need to protect the intestine against 
bile acid overload is reduced in trained animals[22]. 
Finally, Ngo Sock et al[22] found a decrease in pregnane X 
receptor (PXR) mRNA in ileum of trained rats. Since PXR 
receptors protect organisms from exogenous chemical 
insults, and several endobiotics such as lipids, steroids, 
and bile acids[167], the authors advocate that exercise 
training contributes to the maintenance of cholesterol 
and bile acid homeostasis[22]. 

On the whole it appears that, at the molecular level, 
exercise training would contribute to the maintenance of 
normal circulating cholesterol levels by increasing hepatic 
LDL-R and HDL metabolism and by favouring adaptations 
to bile acid metabolism that stimulate fecal bile and 
cholesterol excretion. When discussing the effects of 
exercise training on cholesterol metabolism one has to 
consider that on contrary of fatty acids and glucose or 
glycogen, cholesterol is not metabolized during exercise. 
Therefore, it might be an interesting avenue to look at 
the impact of exercise training on cholesterol metabolism 
through its link with lipid and glucose metabolism such as 
intestinal lipid absorption or hepatic de novo lipogenesis. 

IN SUMMARY (ESTROGEN DEFICIENCY 
EFFECTS)
HMGCoA-r gene expression in liver along with its 
transcription factor SREBP-2 is decreased in Ovx animals 
suggesting a decrease in cholesterol synthesis. There 
are also indications that bile acid synthesis (i.e., CYP7A1) 
and transporters of bile acid excretion into caniculi (i.e., 
BSEP) are also decreased with estrogen deficiency. The 
reduction in hepatic bile acid metabolism would support 
the finding that total bile production is reduced in Ovx 
rats[111]. 

Although it has been shown that hepatic PCSK9 as 
well as SREBP-2 and LDL-R mRNA levels are reduced in 
estrogen deficient animals, there is on the whole data 
supporting the contention that LDL-R protein levels are 
increased in Ovx animals most likely associated with 
a reduction in PCSK9 gene expression. Although it is 

difficult at the present time to reconcile clearly the impact 
of the absence of estrogens on the dynamics of hepatic 
PCSK9 and LDL-R and its consequence on plasma LDL-
cholesterol, it is evident that estrogen levels play a critical 
role. The sex specific interaction between LDL-R and 
PCSK9 would be particularly relevant to post-menopausal 
women, especially in view of a new class of cholesterol 
lowering drugs, the PCSK9 inhibitors[68].

There are also data supporting the finding that VLDL 
and HDL metabolism are changed with the absence of 
estrogens. VLDL production and its main regulatory factor 
(MTP) have been repeatedly reported to be decreased 
in Ovx animals. On the other hand, increases in SR-B1 
and ABCA1 mRNA in liver of Ovx animals support the 
contention that HDL metabolism is increased in these 
animals. An increase in ABCA1 in intestine suggesting an 
increase in HDL biosynthesis has also been reported[14].

Although it is obvious that more work has to be done 
to clearly understand the changes in cholesterol and bile 
acid metabolism in liver and intestine with the absence 
of estrogens, the data actually available in Ovx models 
tend to indicate an increase in cholesterol influx into the 
liver and a decrease in cholesterol efflux. 
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Abstract
AIM: To investigate the effect of microRNA on insulin-
like growth factor binding protein-3 (IGFBP-3) and 
hence on insulin-like growth factor-Ⅱ (IGF-Ⅱ) bioavaila
bility in hepatocellular carcinoma (HCC).

METHODS: Bioinformatic analysis was performed 
using microrna.org, DIANA lab and Segal lab softwares. 
Total RNA was extracted from 23 HCC and 10 healthy 
liver tissues using mirVana miRNA Isolation Kit. 
microRNA-17-5p (miR-17-5p) expression was mimicked 
and antagonized in HuH-7 cell lines using HiPerFect 
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Transfection Reagent, then total RNA was extracted 
using Biozol reagent then reverse transcribed into cDNA 
followed by quantification of miR-17-5p and IGFBP-3 
expression using TaqMan real-time quantitative PCR. 
Luciferase reporter assay was performed to validate 
the binding of miR-17-5p to the 3’UTR of IGFBP-3. Free 
IGF-Ⅱ protein was measured in transfected HuH-7 
cells using IGF-Ⅱ ELISA kit. 

RESULTS: Bioinformatic analysis revealed IGFBP-3 as a 
potential target for miR-17-5p. Screening of miR-17-5p 
and IGFBP-3 revealed a moderate negative correlation 
in HCC patients, where miR-17-5p was extensively 
underexpressed in HCC tissues (p  = 0.0012), while 
IGFBP-3 showed significant upregulation in the same set 
of patients (p  = 0.0041) compared to healthy donors. 
Forcing miR-17-5p expression in HuH-7 cell lines 
showed a significant downregulation of IGFBP-3 mRNA 
expression (p  = 0.0267) and a significant increase in 
free IGF-Ⅱ protein (p  = 0.0339) compared to mock 
untransfected cells using unpaired t -test. Luciferase 
assay validated IGFBP-3 as a direct target of miR-17-
5p; luciferase activity was inhibited by 27.5% in cells 
co-transfected with miR-17-5p mimics and the construct 
harboring the wild-type binding region 2 of IGFBP-3 
compared to cells transfected with this construct alone (p  
= 0.0474). 

CONCLUSION: These data suggest that regulating 
IGF-Ⅱ bioavailability and hence HCC progression can 
be achieved through targeting IGFBP-3 via  manipulating 
the expression of miRNAs.

Key words: Insulin-like growth factor binding protein-3; 
Insulin-like growth factor signaling pathway; microRNA; 
Insulin-like growth factor-Ⅱ; Hepatocellular carcinoma

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: microRNA-17-5p (miR-17-5p) was extensively 
underexpressed in hepatocellular carcinoma tissues, while 
insulin-like growth factor binding protein-3 (IGFBP-3) 
mRNA showed significant upregulation in the same set 
of patients. In HuH-7 cell line, miR-17-5p directly targets 
and downregulates IGFBP-3, consequently elevating the 
level of free insulin-like growth factor-Ⅱ (IGF-Ⅱ). Thus, 
manipulation of microRNAs can potentially control the 
activation of the oncogenic IGF axis.

Habashy DA, El Tayebi HM, Fawzy IO, Hosny KA, Esmat G, 
Abdelaziz AI. Interplay between microRNA-17-5p, insulin-like 
growth factor-Ⅱ through binding protein-3 in hepatocellular 
carcinoma. World J Hepatol 2016; 8(23): 976-984  Available 
from: URL: http://www.wjgnet.com/1948-5182/full/v8/i23/976.
htm  DOI: http://dx.doi.org/10.4254/wjh.v8.i23.976

INTRODUCTION
The insulin-like growth factor (IGF) signaling pathway 

is composed of IGF ligands, IGF receptors and insulin-
like growth factor binding proteins (IGFBPs) which 
work in unison to regulate cell growth, differentiation, 
proliferation, and apoptosis. This axis is activated when 
the IGFs, IGF-Ⅰ and IGF-Ⅱ, bind to the insulin-like 
growth factor-1 receptor (IGF-1R) and activate a series 
of downstream signaling pathways controlling the cell 
cycle[1,2]. IGFBPs are transport proteins which bind to IGF-
Ⅱ with high affinity thereby prolonging their half-life and 
circulation turnover, and negatively regulate the activity 
of IGFs by controlling their binding to IGF receptors[3]. 
The levels of IGFBPs are modulated by various IGFBP 
proteases, such as matrix metalloproteinases (MMPs), 
which regulate the bioavailability and activity of IGFBPs, 
by mediating their proteolytic cleavage[4].

Multiple IGF axis members were found to play an 
important role in hepatocellular carcinoma (HCC) patho
genesis. IGF-Ⅱ was found to be overexpressed in HCC 
and to promote tumor cell migration, proliferation and 
extra-hepatic metastasis[5-8]. Moreover, our research 
group has shown IGF-Ⅱ to be overexpressed in peripheral 
blood monocytes of HCC patients, and this aberrant 
expression was directly correlated with elevated serum 
levels of alfa-fetoprotein and poor prognosis[9]. IGF-1R 
was reported to be upregulated in 59% of HCC tissues in 
which it was associated with poor prognosis and tumors 
exceeding the Milan criteria[10]. The tumorigenic effect of 
IGF-1R was reversed through its efficient blockage by 
combination of two IGF-1R antibodies which dramatically 
reduced liver tumor growth[11]. On the other hand, IGFBP-3 
expression was found to be inversely correlated to HCC 
metastasis and proliferation[12,13].

The potential regulation of IGF axis members by 
microRNAs is an appealing subject of investigation. We 
have previously shown that miR-615-5p downregulates 
IGF-Ⅱ expression and forcing its expression reduces 
tumorigenesis in HCC[14]. miR-122 was found to suppress 
IGF-1R expression thus inhibiting HCC progression[15,16]. 
Conversely, we have demonstrated that forcing the 
expression of the oncomiR miR-96 leads to the up
regulation of IGF-1R and IGFBP-3 expression, while 
forcing the expression of the oncomiR-182 leads to 
the downregulation of IGF-1R and the upregulation of 
IGFBP-3 expression[17]. On the other hand, our research 
group reported that miR-155 induces the expression 
of IGF-Ⅱ and IGF-1R and downregulates IGFBP-3 
expression[18]. Nevertheless, the regulation of IGF-axis 
members by microRNAs still needs further investigation, 
particularly for the IGFBP-3. In silico analysis revealed 
IGFBP-3 as a potential downstream target for several 
microRNAs, one of which is microRNA-17-5p (miR-17-5p). 
This microRNA is an oncomiR that belongs to miR-17-92 
cluster[19]. We have previously shown miR-17-5p to be 
significantly downregulated in non-metastatic HCC tissues 
compared to healthy tissues, where forcing its expression 
in HuH-7 cells resulted in enhancement of tumor cell 
growth, proliferation, migration, and colony-formation[20]. 
Therefore, this study aimed at identifying the impact of 
this important microRNA on IGFBP-3 expression, and 
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consequently on the IGF-Ⅱ bioavailability, and hence on 
HCC tumorigenesis.

MATERIALS AND METHODS
Bioinformatics
Bioinformatics algorithms microrna.org, DIANA Lab, 
and Segal lab were used to predict microRNAs that may 
target IGFBP-3.

Study subjects
This study included 23 HCC patients who underwent liver 
transplantation surgery in the Kasr Al Aini Hospital, Cairo 
University, Egypt. Ten healthy liver tissues were obtained 
from the healthy liver donors. Healthy donors were non-
diabetic, non-hypertensive and negative for hepatitis 
B and C viruses (Table 1). The study was approved by 
the ethical review committees of the German Univer
sity in Cairo and Cairo University, and is in accordance 
with the standards set by the Declaration of Helsinki. 
All participants gave their written informed consent. 
All patients were non-metastatic with no extrahepatic 
manifestations and no vascular invasion. Most of the 
patients (65.5%) had more than one focal lesion as 
indicated in the pathology report and were subjected to 
clinical assessment as shown in (Table 2).

Cell cultures and transfection of microRNA 
oligonucleotides
HuH-7 cells were maintained in Dulbecco’s modified 
Eagle’s medium (Lonza, Switzerland) supplemented with 
4.5 g/L glucose, 4 mmol/L L-glutamine, 10% fetal bovine 
serum and Mycozap (1:500, Lonza, Switzerland) at 37 ℃ 
in 5% CO2 atmosphere. HuH-7 cells were transfected 
with mimics and inhibitors of miR-17-5p (Qiagen, Ger

many) (Qiagen ID: MSY0000070 and MIN0000070, 
respectively). All transfection experiments were carried 
out in triplicates using HiPerFect Transfection Reagent 
(Qiagen, Germany), according to the manufacturer’s 
protocol; the experiments were repeated three times. 
Cells that were only exposed to transfection reagent 
are designated as mock. Cells transfected with miR-17-
5p mimics are designated as miR-17-5p, whereas cells 
transfected with miR-17-5p inhibitor are designated as 
anti-miR-17-5p.

mRNA and microRNA isolation from liver tissues and 
HCC cell lines
mRNAs and microRNAs were extracted from liver tissues 
and HCC cell lines. Fresh liver samples (HCC and healthy 
tissues) were collected during surgery and were imme
diately snapfrozen in liquid nitrogen. The specimens were 
manually pulverized in liquid nitrogen, and about 100 mg 
of tissues powder were used for large and small RNA 
extraction using mirVana miRNA Isolation Kit (Ambion, 
United States), according to the manufacturer’s protocol. 
HCC cell lines were harvested 48 h after transfection 
according to HiPerFect Transfection Reagent protocol 
and total RNA was extracted using Biozol Reagent (Bioer 
Technology, China). 

miRNA and mRNA quantification
The extracted microRNAs were reverse transcribed into 
single stranded complementary DNA (cDNA) using TaqMan 
MicroRNA Reverse Transcription Kit (ABI, United States) 
and specific primers for has-miR-17-5p and RNU6B. mRNA 
was reverse transcribed into cDNA using the high-capacity 
cDNA reverse transcription kit (ABI, United States) 

Average ± SD

HCC and cirrhotic patient parameters 
   Mean age      49 ± 13.5
   Sex: Male/female 22/1
   Ethanol abuse None
   AST (U/L) 100.5 ± 65.8
   ALT (U/L)   85.6 ± 95.6
   Alkaline phosphatase (U/L) 110.2 ± 60.7
   Serum albumin (g/dL)   4.6 ± 1.5
   Serum AFP (ng/mL) 155.7 ± 22.3
   HCV Ab 100% (23/23 HCC patients)
   HBV Ab 17.3% (4/23 HCC patients)
Healthy control (liver donor) parameters
   Mean age      31 ± 10.5
   Sex: Male/female 7/3
   Ethanol abuse None
   HCV Ab None
   HBV Ab None

Table 1  Characteristic features of non-metastatic hepato
cellular carcinoma patients and healthy controls

HCC: Hepatocellular carcinoma; HCV: Hepatitis C virus; AFP: Alpha fetal 
protein; HBV: Hepatitis B virus; AST: Aspartate aminotransferase; ALT: 
Alanine aminotransferase; SD: Standard deviation.

Patients No. of focal lesions Size of focal lesions (cm)

Patient 1 3 focal lesions 1.5, 1 and 1
Patient 2 Unifocal 2.5
Patient 3 3 focal lesions 2, 2.5 and 3
Patient 4 3 focal lesions 2, 2 and 3.5
Patient 5 Unifocal 1.5-2
Patient 6 3 focal lesions 3-4, 1 and 1
Patient 7 Unifocal 4
Patient 8 3 focal lesions 4, 1 and 1
Patient 9 3 focal lesions 1, 1 and 1.5
Patient 10 Unifocal 2.5
Patient 11 2 focal lesions 1 and 1.7
Patient 12 3 focal lesions 1, 1 and 1
Patient 13 Unifocal 3
Patient 14 3 focal lesions 3, 1.5 and 2
Patient 15 3 focal lesions 1, 1 and 4 
Patient 16 2 focal lesions 3 and 1.5
Patient 17 2 focal lesions 1.5 and 3
Patient 18 3 focal lesions 2.5, 2.5 and 1.5
Patient 19 3 focal lesions 1.5, 1 and 1
Patient 20 Unifocal 2
Patient 21 Unifocal 1.5
Patient 22 3 focal lesion 3, 2.5 and 1
Patient 23 Unifocal 3

Table 2  Number/sizes of focal lesions according to Milan 
criteria

Habashy DA et al . miR-17-5p regulates IGF-Ⅱ via  targeting IGFBP-3
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according to the manufacturer’s instructions. Relative 
expression of miR-17-5p and RNU6B (for normalization) 
as well as IGFBP-3 and beta-2 microglobulin (B2M; as 
housekeeping gene for normalization) was quantified 
using TaqMan Real-Time quantitative PCR (ABI Assay IDs: 
002308, 001093, Hs00365742_g1 and Hs00984230_m1, 
respectively) using StepOne™ Systems (ABI, United 
States). Relative expression was calculated using the 
2–ΔΔCT method. All PCR reactions including controls were 
run in duplicate reactions.

IGFBP-3 3’UTR construct and luciferase assay
The two predicted target sites for miR-17-5p on IGFBP-3 
3’UTR were each designed as sticky ended oligonucleo
tides flanked by Sac Ⅰ and Xba Ⅰ restriction sites, and 
ligated into the pmirGLO Dual-Luciferase miRNA Target 
Expression Vector (Promega, Germany) to form the two 
wild-type (WT) constructs. Also, two mutant constructs 
(MUT) were designed where 3 nucleotides from the 
binding region had been deleted from each site. The first 
target site is denoted as WT1 and its mutant form as 
MUT1; the second target site is WT2 and its mutant form 
is MUT2. The forward and reverse primer sequences for 
each construct are as shown in (Table 3). HuH-7 cells 
were seeded in 24-well plates and either WT or MUT 
constructs were transfected by lipofection technique using 
SuperFect Transfection Reagent (Qiagen, Germany). The 
following day, the cells were co-transfected with miR-
17-5p mimics using HiPerFect according to the protocol 
(Qiagen). After 48 h, luciferase assay was performed 
using Steady-GLO Luciferase Reporter System (Promega, 
Germany) according to the manufacturer’s protocol. After 
5 min, luminescence was measured at 545 nm. Luci
ferase experiments were done in triplicates.

Quantitative detection of free IGF‑II protein
Free IGF‑Ⅱ protein was measured in the cell culture 
supernatant from miR-17-5p mimicked, miR-17-5p anta
gonized, and mock untransfected HuH-7 cells, using the 
human IGF‑Ⅱ ELISA kit (CUSABIO, China), according 
to the manufacturer’s instructions. Absorbance was 
measured at 450 nm in a microplate reader.

Statistical analysis
miRNA and gene expression data analysis was performed 

according to the 2-ΔΔCT method. An assessment of the 
normality of data was done as a prerequisite for all 
the statistical tests to identify the correct statistical me
thods to analyze our data with. We used Shapiro Wilks 
test since the size of the sample is less than 50. The 
normality test for miR-17-5p and IGFBP-3 screening 
experiments of “Healthy controls” and “HCC patients” 
showed that the dependent variable, “RQ”, isn’t normally 
distributed since the significant value of the Shapiro Wilks 
test is less than 0.05, so the data significantly deviate 
from a normal distribution, with an exception in the data 
obtained from IGFBP-3 expression in the healthy controls 
were found to be normally distributed. In view of this 
fact the statistical significance of the data was analyzed 
by performing the non-parametric Mann-Whitney test. 
The degree of the relationship between linear related 
variables was measured by the Pearson r correlation 
test. The normality test for the transfection and binding 
confirmation experiments showed that the data are 
normally distributed; therefore the parametric unpaired 
t-test was used. The specific types of tests, when 
applicable, are indicated in the figure legends. All data 
are presented as mean ± standard error of the mean 
(SEM). All tests were 2-tailed and a two-tailed P value 
< 0.05 was required for statistical significance. All the 
data were statistically analyzed using GraphPad Prism 5 
software.

The statistical methods of this study were reviewed 
by Dr. Nihal Aly Etman, Department of Statistics, Mathe
matics and Insurance, Faculty of Commerce, Ain Shams 
University.

RESULTS
Bioinformatics
miR-17-5p accession number and mature sequence 
were retrieved using miRBase database (http://www.
mirbase.org/). In silico predictions were carried out 
using three different softwares, and results showed 
IGFBP-3 to be a potential downstream target to miR-
17-5p, where the microRNA was predicted to bind to 
the 3’UTR of IGFBP-3 at two different regions. The 
interactions between miR-17-5p seed sequence and its 
target sequence on the 3’UTR of IGFBP-3 are as shown 
in (Table 4). Where, the seed sequence of miR-17-5p 

Primer name Primer sequence

WT1 forward 5’-CAATGGTAAACTTGAGCATCTTTTCACTTTCCAGTAGT-3’
WT1 reverse 5’-CTAGACTACTGGAAAGTGAAAAGATGCTCAAGTTTACCATTGAGCT-3’
WT2 forward 5’-CGTCGAAGCGGCCGACCACTGACTTTGTGACTTT-3’
WT2 reverse 5’-CTAGAAAGTCACAAAGTCAGTGGTCGGCCGCTTCGACGAGCT-3’
MUT1 forward 5’-CAATGGTAAACTTGAGCATCTTTTCATCCAGTAGT3’
MUT1 reverse 5’-CTAGACTACTGGATGAAAAGATGCTCAAGTTTACCATTGAGCT-3’
MUT2 forward 5’-CGTCGAAGCGGCCGACCACTGACGTGACTTT-3’
MUT2 reverse 5’-CTAGAAAGTCACGTCAGTGGTCGGCCGCTTCGACGAGCT-3’

Table 3  The forward and reverse primer sequences used in the wild type 1 and 2, and 
the mutant type 1 and 2 insulin-like growth factor binding protein-3 3’UTR constructs

WT: Wild type; MUT: Mutant type.
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is shown in bold and italic, while the target sequence of 
the 3’UTR of IGFBP-3 is underlined. The lines indicate 
complementarity between the binding region of the 
mRNA and the seed sequence of the microRNA, while 
the dots indicate mismatches or GU wobbles.

Expression profile of miR-17-5p and IGFBP-3 in non-
metastatic HCC liver tissues
Expression of miR-17-5p in non-metastatic HCC tissues 
(n = 23) (0.318 ± 0.109) was significantly lower com
pared to healthy tissues (n = 10) (3.488 ± 1.267, p = 
0.0012; Figure 1a). On the other hand, the expression 
of IGFBP-3 in the same non-metastatic HCC tissues 
(5.913 ± 1.294) was significantly higher compared to 
healthy tissues (1.352 ± 0.272, p = 0.0041; Figure 1b). 

Correlation analysis between miR-17-5p and IGFBP-3 
mRNA expression in HCC tissues
IGFBP-3 mRNA was quantified in all HCC tissues and 
correlated to miR-17-5p expression in the same patients. 
Using Pearson’s statistical method of correlation, miR-
17-5p expression was found to be moderately inversely 
correlated but not statistically significant with IGFBP-3 
transcript levels in all HCC tissues studied (r = -0.3244, p 

= 0.1310; Figure 1c). 

Impact of miR-17-5p on IGFBP-3 mRNA in HuH-7 cells 
HuH-7 cells were transfected with miR-17-5p mimics 
and transfection efficiency was achieved with an ob
served 250 fold increase (p = 0.0470) in miR-17-5p 
levels in transfected cells (266.6 ± 113.2) compared 
to their respective untransfected mock cells (1.069 ± 
0.1927) (Figure 2a). Mimicking of miR-17-5p in HuH-7 
resulted in a significant downregulation of IGFBP-3 
mRNA levels (0.6527 ± 0.1021) compared to mock 
untransfected cells (1.069 ± 0.1502, p = 0.0267). Con
versely, inhibitors of miR-17-5p in HuH-7 cells showed a 
tendency of increase compared to mock untransfected 
HuH-7 cell lines (Figure 2b).

Impact of miR-17-5p on free IGF-II protein in HuH-7 cells
In miR-17-5p mimicked HuH-7 cells, there was a signi
ficant upregulation in the amount of the free IGF-Ⅱ 
protein (1.045 ± 0.05255) compared to mock untran
sfected HuH-7 cells (0.8344 ± 0.06783, p = 0.0339). 
Antagonizing the expression of miR-17-5p had no effect 
on the amount of the free IGF-Ⅱ protein compared to 
the mock HuH-7 cells (Figure 3).  

Target region hsa-miR-17-5p (seed sequence) binding to IGFBP-3 
(target sequence)

Target sequence position on 
3’UTR of IGFBP-3

6mer/7mer/8mer

Region 1 miR-17-5p   3'gaUGGACGUG-ACAUUCGUGAAAc 5'
                       | | : | |    :  |  |   |           | | | | | |

IGFBP-3       5'aaACUUGAGCAUCUUUUCACUUUc 3'

196-204 6mer

Region 2 miR-17-5p   3’GAUGGAC- GUGACAUUCGUGAAAC 5’
                     |       ||__     | | || |___          | | | | || 

IGFBP-3      5’ CGGCCGACCACUG-----------ACUUUG 3’

335-343 6mer

Table 4  Predicted target region-seed sequence binding for miR-17-5p on the 3’UTR of insulin-like growth 
factor binding protein-3

IGFBP-3: Insulin-like growth factor binding protein-3; miR-17-5p: MicroRNA-17-5p.
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Figure 1  Expression profile of microRNA-17-5p and insulin-like growth factor binding protein-3 and their correlation in liver tissues. The expression of miR-
17-5p and IGFBP-3 were investigated in 10 healthy and 23 HCC liver tissues using TaqMan qRT-PCR and normalized in each sample to RNU6B endogenous control 
for miR-17-5p and B2M for IGFBP-3. A: miR-17-5p expression was down-regulated in non-metastatic HCC patients compared to healthy liver tissues (P = 0.0012); B: 
Regarding IGFBP-3, its mRNA expression showed a significant higher expression in HCC tissues compared to healthy tissues (P = 0.0041). Statistical analysis was 
performed using the Mann-Whitney test; C: Relative quantitation (RQ) values of miR-17-5p and IGFBP-3 mRNA in HCC tissues were analyzed using Pearson’s method of 
correlation. A non-significant inverse correlation was found with Pearson’s r = -0.3244 (P = 0.1310). bP < 0.01. HCC: Hepatocellular carcinoma; IGFBP-3: Insulin-like 
growth factor binding protein-3; miR-17-5p: MicroRNA-17-5p; qRT-PCR: Real-time quantitative PCR.
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Confirming IGFBP-3 as a direct target of miR-17-5p
To confirm that miR-17-5p directly targets the 3’UTR 
of IGFBP-3, wild-type constructs (WT1 and WT2) were 
designed where each of the two predicted 3’UTR target 
regions were inserted downstream to a luciferase reporter 
gene in pmiRGLO vector. To assess that the effects 
were due to specific binding to these binding regions, a 
mutant construct for each binding site was also prepared 
in which 3 base pairs were deleted from the predicted 
binding sequence in the 3’UTR of IGFBP-3, to form mu
tant constructs MUT1 and MUT2, respectively. Also, in a 
set of cells, empty pmiRGLO vector was transfected as a 
control to ensure that miR-17-5p mimics have no effect 

on the vector itself. For each binding region, experiments 
were performed by transfecting HuH-7 cells with either 
the construct containing the WT 3’UTR binding region 
of IGFBP-3, or the construct containing the MUT 3’UTR 
binding region. Then miR-17-5p mimics were co-transfect
ed with the vectors or constructs and luciferase reporter 
activity was assessed. In cells transfected with WT1 
construct, luciferase activity was not affected upon co-
transfection with miR-17-5p mimics (Figure 4a). On the 
other hand, luciferase activity was inhibited by 27.5% 
in cells co-transfected with miR-17-5p mimics and WT2 
construct (72.48 ± 2.383) compared to cells transfected 
with the WT2 construct alone (100.0 ± 9.432, p = 
0.0474) (Figure 4b). In contrast, in cells transfected with 
either MUT1 or MUT2, no change in luciferase activity 
was observed upon mimicking with miR-17-5p (Figure 4). 
The inhibition in the luciferase activity observed only in 
the WT2 construct indicates direct targeting and trans
criptional inhibition of IGFBP-3 by miR-17-5p mimics 
through only one of the two predicted target regions. 

DISCUSSION
The regulation of IGFBP-3 by microRNAs has not been 
extensively studied but recently our research group 
showed that the oncomiR miR-155 represses IGFBP-3 
expression in HCC cell lines[18]. In addition, we showed 
an increased expression of IGFBP-3 upon forcing the 
expression of miR-96 and miR-182[17]. To the best of 
our knowledge the IGF-Ⅱ bioavailability has never been 
investigated after targeting IGFBPs with microRNAs, 
therefore in this study, we aimed at identifying a new 
microRNA which could regulate the IGFBP-3 and con
sequently the IGF-Ⅱ bioavailability, and hence influence 
HCC tumorigenesis. In silico analysis revealed IGFBP-3 
as a potential downstream target for miR-17-5p (Table 4), 
a microRNA which we have previously shown to have 
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Figure 2  Impact of microRNA-17-5p on insulin-like growth factor binding protein-3 mRNA expression in HuH-7 cell line. A: The expression of miR-17-5p 
was determined by TaqMan qRT-PCR in HuH-7 cells transfected with oligonucleotide mimics of miR-17-5p, 48 h post-transfection, relative to their expression in 
mock untransfected HuH-7 cells. The expression of miR-17-5p was normalized to RNU6B endogenous control. A: Transfection of miR-17-5p mimics increased miR-
17-5p levels in HuH-7 by 250 fold compared to mock cells (P = 0.0470). Unpaired t-test was performed; B: HuH-7 cells were transfected with miR-17-5p mimics or 
inhibitors, and the relative expression of IGFBP-3 was determined using TaqMan qRT-PCR, relative to mock untransfected cells, and gene expression was normalized 
to endogenous control B2M. IGFBP-3 mRNA expression was dramatically suppressed upon mimicking of miR-17-5p compared to mock cells (P = 0.0267), while 
inhibitors of miR-17-5p showed a tendency of increase compared to mock cells. Unpaired t-test was performed. aP < 0.05. IGFBP-3: Insulin-like growth factor binding 
protein-3; miR-17-5p: MicroRNA-17-5p; qRT-PCR: Real-time quantitative PCR.
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Figure 3  Impact of microRNA-17-5p on free insulin-like growth factor-Ⅱ 
protein in HuH-7 cells. HuH-7 cells were transfected with miR-17-5p mimics 
or inhibitors. The free IGF-Ⅱ protein was measured in media of mimicked 
and antagonized HuH-7 cells using an IGF-Ⅱ ELISA Kit. Free IGF-Ⅱ protein, 
measured at λmax = 450, was found to be significantly increased upon 
mimicking of miR-17-5p expression compared to mock untransfected cells (P 
= 0.0339), while inhibitors of miR-17-5p showed no effect on the levels of free 
IGF-Ⅱ protein levels compared to mock cells. Unpaired t-test was performed. 
aP < 0.05. IGF-Ⅱ: Insulin-like growth factor-Ⅱ; miR-17-5p: MicroRNA-17-5p.
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oncogenic properties in HCC[20]. 
No correlation analysis was previously done bet

ween miR-17-5p and IGFBP-3 expression in HCC 
patients, therefore non-metastatic liver tissues of HCC 
patients were screened for that purpose. miR-17-5p was 
markedly downregulated (Figure 1a) while IGFBP-3 
was significantly upregulated (Figure 1b) in the non-
metastatic liver tissues of HCC patients compared to 
healthy controls. This goes in line with previous studies 
showing IGFBP-3 to be highly expressed in breast 
and esophageal cancer[21,22]. But on the other hand, it 
contradicts other studies that reported reduced IGFBP-3 
mRNA expression and protein levels in metastatic HCC 
patients[12,13]. Moreover, the repression of miR-17-5p 
in HCC tissues (Figure 1a) corroborates our previous 
results that showed a significant downregulation of miR-
17-5p expression in non-metasatic HCC patients[20], but 
nonetheless it contradicts other studies in metastatic HCC 
tissues[23]. These disparities can, however, be attributed 
to differences in the cohorts of patients included in the 
various studies, with regards to stage and etiology of the 
disease as well as other factors such as ethnicity, gender 
and age. Of note, the results of the correlation analysis 
revealed a moderate negative correlation between miR-
17-5p and IGFBP-3 expression in HCC patients (Figure 
1c), suggesting that IGFBP-3, as predicted by in silico 
analysis, may in fact be under the posttranscriptional 
regulation of miR-17-5p.

In order to investigate the effect of miR-17-5p on 
IGFBP-3, transfection experiments were performed by 
forcing miR-17-5p expression in HuH-7 cell lines and 
the expression of IGFBP-3 mRNA was assessed, where 
it was found that upon forcing miR-17-5p expression 
in HuH-7 cells, there was a significant downregulation 
in IGFBP-3 expression (Figure 2b). This finding further 
implies that miR-17-5p may target and regulate IGFBP-3 

expression. As revealed by in silico analysis, the 3’UTR 
of the IGFBP-3 transcript contains two exclusive putative 
binding sites for miR-17-5p. In order to validate IGFBP-3 
as a direct downstream target of miR-17-5p, a WT and 
a MUT luciferase reporter gene construct was prepared 
for each binding region on the 3’UTR of IGFBP-3. Using 
these microRNA-target expression constructs, it was 
demonstrated that forcing the expression of miR-17-
5p significantly decreased luciferase activity only in the 
construct harboring the WT2 binding region of the 3’
UTR of IGFBP-3 target gene (Figure 4). This interesting 
finding indicates that only one of the two putative 
binding sites is in fact functionally active and that miR-
17-5p effectively targets and inhibits the transcription of 
IGFBP-3 by directly associating with this specific target 
region. This unusual observation has also been found 
in colon cancer where bioinformatic tools predicted 
two target sites on the oncogene Friend leukemia virus 
integration 1 (Fli-1) for the tumor suppressor miR-145; 
however, upon measuring the luciferase activity only the 
construct harboring one of these two predicted target 
sites of Fli-1 showed a decrease in luciferase activity 
by more than 50% upon miR-145 mimicking, while the 
other construct harboring the second target site did not 
respond to miR-145[24].

Since IGFBP-3 is a crucial negative regulator of the 
bioavailability of IGF-Ⅱ, therefore the levels of free IGF-
Ⅱ protein were quantified in the media of miR-17-5p 
mimicked and mock untransfected HuH-7 cells. The 
results showed a significant increase in unbound IGF-
Ⅱ in miR-17-5p mimicked HuH-7 cells compared to 
mock untransfected cells (Figure 3). This in turn confirms 
that miR-17-5p regulates IGF-Ⅱ bioavailability through 
direct targeting of IGFBP-3. In this regard, the biological 
function of miR-17-5p appears to simulate the effect of 
another regulator of the IGF pathway, the MMPs, whose 
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Figure 4  Insulin-like growth factor binding protein-3 is a direct target of miR-17-5p. For each target sequence, experiments were performed by transfecting 
HuH-7 cells with either empty pmiRGLO vector, or the construct with the wild-type (WT) miR-17-5p target region insert, or the construct with the mutant (MUT) miR-17-
5p target region insert. Then miR-17-5p mimics were co-transfected with the vectors or constructs. A: Luciferase activity was not affected in cells co-transfected with 
miR-17-5p mimics and WT1 construct compared to cells transfected with the WT1 construct alone; B: On the other hand, luciferase activity was inhibited by 27.5%, 
in cells co-transfected with miR-17-5p mimics and WT2 construct compared to cells transfected with the WT2 construct alone (P = 0.0474). The cells transfected with 
either of the mutant constructs (MUT1 or MUT2) show no change in the luciferase activity upon mimicking with miR-17-5p. Unpaired t-test was performed. aP < 0.05. 
NS: Not significant; IGFBP-3: Insulin-like growth factor binding protein-3; miR 17-5p: MicroRNA-17-5p.
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overexpression leads to the decrease in IGFBP-3 and 
subsequent increase in IGF-Ⅱ bioavailability[25]. 

In conclusion, the findings of this study shed light on 
the important role of the oncogenic miR-17-5p in hepa
tocarcinogenesis, where this microRNA was found to 
increase IGF-Ⅱ bioavailability by directly targeting and 
repressing IGFBP-3 expression. Hence, manipulating 
microRNA expression might be a compelling potential 
therapeutic approach in preventing HCC progression.
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Abstract
AIM: To interfere with the activation of nuclear factor-
κB (NF-κB) with metformin and explore its effect in 
reversing multidrug resistance (MDR) of hepatocellular 
carcinoma (HCC) cells.

METHODS: Expression of P-glycoprotein (P-gp) and NF-
κB in human HepG2 or HepG2/adriamycin (ADM) cells 
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treated with pCMV-NF-κB-small interference RNA (siRNA) 
with or without metformin, was analyzed by Western blot 
or fluorescence quantitative PCR. Cell viability was tested 
by CCK-8 assay. Cell cycle and apoptosis were measured 
by flow cytometry and Annexin-V-PE/7-AnnexinV apop
tosis detection double staining assay, respectively. 

RESULTS: P-gp overexpression in HepG2 and HepG2/
ADM cells was closely related to mdr1 mRNA (3.310 ± 
0.154) and NF-κB mRNA (2.580 ± 0.040) expression. NF-
κB gene transcription was inhibited by specific siRNA with 
significant down-regulation of P-gp and enhanced HCC 
cell chemosensitivity to doxorubicin. After pretreatment 
with metformin, HepG2/ADM cells were sensitized to 
doxorubicin and P-gp was decreased through the NF-κB 
signaling pathway. The synergistic effect of metformin 
and NF-κB siRNA were found in HepG2/ADM cells with 
regard to proliferation inhibition, cell cycle arrest and 
inducing cell apoptosis. 

CONCLUSION: Metformin via  silencing NF-κB signaling 
could effectively reverse MDR of HCC cells by down-
regulating MDR1/P-gp expression. 

Key words: Metformin; Reversal; Multidrug resistance; 
Hepatocellular carcinoma

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Metformin might target AMP-activated protein 
kinase mammalian target of rapamycin pathway, 
suppress hypoxia‑inducible factor-1α and transcriptionally 
down-regulate P-glycoprotein (P-gp) and multidrug 
resistance (MDR)-associated protein 1, suggesting that 
metformin may reverse MDR by targeting the AMP-
activated protein kinase/mammalian target of rapamycin/
hypoxia-inducible factor-1α/P-gp and MDR-associated 
protein 1 pathways. In the present study, HepG2/ADM 
cells pretreated with metformin were sensitized to 
doxorubicin and P-gp was decreased through the nuclear 
factor-κB (NF-κB) signaling pathway. The synergistic 
effects were found in the cells with regard to proliferation 
inhibition, cell cycle arrest and inducing apoptosis, 
and inhibiting P-gp expression via  the NF-κB signaling 
pathway effectively reversed MDR by down-regulating 
MDR1/P-gp expression. 

Wu W, Yang JL, Wang YL, Wang H, Yao M, Wang L, Gu JJ, Cai Y, 
Shi Y, Yao DF. Reversal of multidrug resistance of hepatocellular 
carcinoma cells by metformin through inhibiting NF-κB gene 
transcription. World J Hepatol 2016; 8(23): 985-993  Available 
from: URL: http://www.wjgnet.com/1948-5182/full/v8/i23/985.
htm  DOI: http://dx.doi.org/10.4254/wjh.v8.i23.985

INTRODUCTION
Hepatocellular carcinoma (HCC) is one of the most 
common cancers and causes of cancer-related mortality 

worldwide[1-3]. Due to the lack of specific symptoms, 
the vast majority of HCCs are diagnosed at late and/
or advanced stages[4,5]. Although recent advances in 
surgical techniques and interventional therapy have 
improved survival, the emergence of multidrug resis
tance (MDR) to a series of clinical chemotherapeu
tics with different structures or different target sites 
severely blocks the successful management of HCC[6,7]. 
The well recognized mechanism of classical MDR is 
the significant overexpression of human MDR1 gene 
encoding MDR1/P-glycoprotein (P-gp) that acts as an 
efflux pump on cell surface[8,9]. Intracellular anti-cancer 
drugs increasingly flow from cells through the efflux pump, 
thus drug concentrations become lower and cancer cells 
become resistant to chemotherapeutic drugs such as 
doxorubicin[10,11]. 

Recently, some studies have found diverse anticancer 
effects of metformin in the cells of lung, gastric, endo
metrial, breast, and other types of cancer[12,13]. Metformin 
exhibits anti-proliferative effects in tumor cells in vitro 
and in vivo[14,15]. Metformin might target the AMP-activated 
protein kinase (AMPK)/mammalian target of rapamycin 
(mTOR) pathway[16,17], suppress the hypoxia-inducible 
factor-1α (HIF-1α)[18,19] and transcriptionally down-regulate 
P-gp and MDR-associated protein 1 (MRP1), suggest
ing that metformin may reverse MDR by targeting the 
AMPK/mTOR/HIF-1α/P-gp and MRP1 pathways[20,21]. 
In addition, the activation of nuclear factor-kappa B 
(NF-κB) pathway plays an important role in the develop
ment of HCC[22-24], but whether it is related to MDR and 
the underlying molecular mechanisms remain to be 
explored[25,26]. In this study, we silenced NF-κB gene 
transcription with specific small interference RNA (siRNA) 
in human resistant HepG2/adriamycin (HepG2/ADM) 
cells, and explored the impact of metformin and NF-κB 
silencing, alone or in combination, on MDR1 regulation 
and MDR in HCC cells.

MATERIALS AND METHODS
Cell culture
Human hepatoma cell line HepG2, HepG2/ADM cell line 
and hepatocyte cell line LO2 were purchased from Aibio 
Biotech Company (Shanghai, China). LO2 cells were 
cultured in Dulbecco’s modified Eagle’s medium (DMEM, 
KeyGen Biotech Co., Ltd, Nanjing, China) containing 
10% fetal bovine serum (FBS, Invitrogen, United States), 
penicillin (100 U/mL)/streptomycin (100 U/mL), at 37 ℃ 
with 5% CO2. HepG2 and HepG2/ADM cells were cul
tured in RPMI 1640 (KeyGen Biotech Co., Ltd, Nanjing, 
China) complete medium supplemented with 10% FBS, 
penicillin (100 U/mL)/streptomycin (100 U/mL) at 37 ℃ 
in a humidified incubator containing 5% CO2.

Western blot
The cultured cells were washed with phosphate buffered 
saline (PBS) twice and lysed in phenylmethane sulfonyl 
fluoride (PMSF, Beyotime, Nantong, China) cell lysis 
buffer (1:1000), and the protein concentrations were 
determined with the bicinchoninic acid (BCA, Beyotime, 
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Nantong, China) protein assay kit. The protein samples 
were separated by 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis and transferred onto 
polyvinylidene fluoride (PVDF, Millipore, United States) 
membranes. After blocking with 5% skim milk in Tris-
buffered saline with tween (TBST) at room temperature 
for 3 h, the membranes were incubated with the primary 
antibody overnight at 4 ℃. The primary antibodies were 
diluted as follows: p65 and P-p65 (rabbit anti-human, 
1:1000, Cell Signaling, United States), MDR1 (rabbit anti-
human, 1:500, Abcam, United States) and β-actin (mouse 
anti-human, 1:2000, internal reference, Proteintech, 
United States). Then the membranes were washed 
three times with TBST and incubated with a horseradish 
peroxidase-conjugated secondary antibody (mouse or 
rabbit anti-human, 1:1000, Univ-bio, Nanjing, China) 
for 2.5 h at room temperature. Finally, the samples 
were detected with Quantity One software using the 
electrochemiluminescence kit (Millipore, United States). 
All Western blot experiments were repeated three times.

Real-time quantitative PCR
The cultured cells were digested with trypsin. Total RNA 
was extracted with TRIzol (Invitrogen, United States) 
reagent according to the protocol of the manufacturer. 
The quantity of total RNA was determined based on 
absorbance at 260 nm, and the purity of total RNA 
was analyzed based on the absorbance ratio at 260 
and 280 nm (A260/280). Reverse transcription of total 
RNA to complementary DNA (cDNA) was performed 
with RevertAidTM First Strand cDNA Synthesis Kit (MBI 
Fermentas, CA, United States). PCR was carried with an 
SYBR Premix Ex TaqTMⅡ kit (TaKaRa, Dalian, China), 
and GAPDH was used as an internal reference. The 
sequences of the primers used[27] were: NF-κB/p65 
(forward: 5’-CTATCAGTCAGCGCATCCAG-3 and reverse: 
5’-GCCAGAGTTTCGGTTCACTC-3’); mdr1 (forward: 
5’-CCGGTT TGGAGCCTACTTG-3’ and reverse: 5’-TCCAA 
TGTGTTCGGCATTAG-3’); and GAPDH (forward: 
5’-CAAGGTCATCCATGACAAC TTTG-3’ and reverse: 
5’-GTCCACCACCCTGTTGCTGTAG-3’). Real-time PCR 
cycling parameters consisted of initial denaturation at 
94 ℃ for 2 min and 40 cycles of 95 ℃ for 10 s, 55 ℃ 
for 30 s, and 70 ℃ for 45 s. The amplification specificity 
was confirmed by the melting curves. Ct values were 
calculated based on duplicates and normalized to 
GAPDH. The relative expression was calculated using 
the 2−ΔΔCt method. All PCR experiments were repeated 
three times.

Cell viability assay
Cell viability was evaluated with CCK-8 kit (Dojindo, 
Japan). Cells were divided into blank, negative control 
and experimental groups. Briefly, cells in logarithmic 
growth phase were digested with trypsin, and the 
cell suspension liquid (100 μL) was seeded in 96-well 
plates. Toxicity tests were performed with different 
concentrations of ADM added to 96-well plates in the 
experimental group. The micro-plates were pre-cultured 

at 37 ℃ in a humidified incubator containing 5% CO2, 
and liquid was changed at a fixed time interval. Then 
10 μL/well CCK-8 solution was added and incubated 
at 37 ℃ for 4 h. The absorbance (A) was measured 
with a microplate reader at a wavelength of 450 nm. 
Cell survival rate was calculated as Aexp/Acon × 100%. 
Values of IC50 were evaluated with the Graphpad Prism5 
software. Each individual experiment was performed at 
least three times. 

Metformin treatment
HepG2/ADM cells were divided into three groups: 
Blank, control and experiment. The experimental group 
was treated with 1 μmol/L metformin for 24 h, and 
then continued to be cultured for 48 h with 1.5 μmol/L 
doxorubicin. The control group was only treated with 
doxorubicin, and the blank group did not undergo any 
treatment. 

Analysis of cell apoptosis
HepG2/ADM cells were treated with drugs for 48 h, and 
then continued to be cultured for 24 h with another cul
ture solution. Cells were harvested using trypsin without 
EDTA and washed with cold PBS twice. Cell cycle and 
apoptosis (n = 3) were measured by flow cytometry and 
Annexin-V-PE/7-AnnexinV apoptosis detection double 
staining assay (BD, United States), respectively.

Plasmid construction and cell transfection
NF-κB-siRNAs were designed according to the previously 
reported sequences[28] and synthesized by the Biomics 
Company (Nantong, China) according to Rel A sequence 
obtained from Gene ID 5970. The sequences of siRNAs 
were: NF-κB/p65 siRNA (forward, 5′-TGCTGTTCATCTCCTG 
AAAGGAGGCCGTTTTGGCCACTGACTGACGGCCTCCT 
CAGGAGATGAA-3′ and reverse, 5′-CCTGTTCATCTCCT 
GAGGAGGCCGTCAGTCAGTGGCCAAAACGGCCTCC 
TTTCAGGAGATGAAC-3′; and negative-siRNA (forward, 
5′-TGCTGAAATGTACTGCGCGTGGAGACGTTTTGGCCA 
CTGACTGACGTCTCCACGCAGTACATTT-3′ and reverse, 
5′-CCTGAAATGTACTGCGTGGAGACGTCAGTCAGTGGCC 
AAAACGTCTCCACGCGCAGTACATTTC-3′. Each siRNA 
was inserted to a pcDNA™ 6.2-GW/EmGFPmiR vector 
(Invitrogen, United States). HepG2/ADM cells were divided 
into blank control, negative siRNA control and NF-κB/p65 
siRNA transfection groups. After cells were planted into 
microwell plates at a density of 70%, the plasmids were 
transfected into cells for incubation for 24 h according to 
the manufacturer’s instructions. The medium was removed 
on another day and replaced with the fresh one, and the 
transfection efficiency was observed with a fluorescence 
microscope. These experiments were performed in 
triplicate.

Statistical analysis
Data are expressed as the mean ± SD. Statistical 
analyses were done using the SPSS21.0 software pack
age. Differences between groups were assessed using 
analysis of variance or t-test. P ≤ 0.05 was regarded as 
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statistically significant.

RESULTS
Expression of P-gp, mdr1, and NF-kB in different liver 
cell lines
The levels of P-gp, mdr1, and NF-kB expression in diffe
rent liver cell lines are shown in Figure 1. The proliferation 
of HepG2 and HepG2/ADM cells was decreased along 
with the increase of the concentration of doxorubicin, and 
the ability of proliferation was higher in HepG2/ADM cells 
than in HepG2 cells. At 24, 48 and 72 h, the IC50 values 
of doxorubicin against HepG2 cells were 0.489, 0.221 
and 0.224 μmol/L, respectively, and the IC50 values of 
doxorubicin against HepG2/ADM cells were 4.166, 1.522 
and 1.380 μmol/L, respectively. The resistance index (RI, 
μmol/L) of HepG2/ADM cells was 8.519 at 24 h, 6.874 
at 48 h and 6.166 at 72 h. There was almost no P-gp 
expression in LO2 cells. Different degrees of expression of 
P-gp protein were observed in HepG2 and HepG2/ADM 
cells, but the P-gp expression in HepG2/ADM cells was 
significantly higher than that in HepG2 cells (Figure 1A 
and B). The p-p65 expression was significantly increased, 
while the expression of p65 was significantly decreased in 
HepG2/ADM cells (Figure 1C and D). The levels of mdr1 
mRNA and NF-κB mRNA were 3.310 ± 0.154 and 2.580 
± 0.040, respectively, in HepG2/ADM cells, and 0.084 ± 
0.038 and 0.607 ± 0.032, respectively, in HepG2 cells; 
the former was significantly higher than the latter (P < 
0.01). Relative transcript levels (2-∆∆ct) of mdr1 mRNA 
and NF-κB mRNA were 9.381 ± 0.750 and 3.927 ± 0.069, 
respectively (Figure 1E).

Effect of metformin on HepG2/ADM cells 
The effect of metformin on the proliferation of HepG2/ADM 

cells was concentration- and time-dependent (Table 1). 
Metformin showed no significant effect on HepG2/ADM 
cells when its concentration was less than 3 mmol/L, 
but had different degrees of inhibition on the prolifera
tion of HepG2/ADM cells when its concentration was 
between 3-10 mmol/L (P < 0.05). The HepG2/ADM 
cells were divided into experimental and control groups. 
After pretreatment with metformin, the experimental 
group cells were treated with different concentrations 
of doxorubicin. The effect of adriamycin combined with 
metformin on the proliferation of HepG2/ADM cells is 
shown in Table 2. After treatment with metformin, HepG2/
ADM cells were more sensitive to adriamycin.

Metformin promotes HepG2/ADM cell apoptosis
The levels of HepG2/ADM cell apoptosis in the ex
perimental (treated with metformin plus adriamycin), 
control (only treated with adriamycin) and blank (without 
adriamycin or metformin) groups are shown in Figure 2. 
After the cells were pretreated with 1 mmol/L metformin 
for 24 h, adriamycin was added. MDR1 in HepG2/ADM 
cells was down-regulated, the cell cycle was blocked at 
G0/G1 phase, and apoptosis was enhanced. Significant 
differences in the apoptosis rates were found among 
different groups (F = 3726.97, P < 0.001), and the 
apoptosis rate was significantly higher in the experimental 
group (22.17% ± 0.37%) than in the control group 
(14.86% ± 0.21%) or the blank group (4.17% ± 0.13%). 

Metformin reverses MDR via the NF-κB signaling 
pathway
Metformin reversed the MDR of HCC cells via the NF-
κB signaling pathway (Figure 3). The levels of P-gp 
expression in the HepG2/ADM cells were decreased with 

Time (h) 0 (blank) 0.1 mmol/L 0.3 mmol/L 1 mmol/L 3 mmol/L 10 mmol/L

24 1.242 ± 0.03 1.233 ± 0.04 1.221 ± 0.02 1.195 ± 0.00 1.189 ± 0.02 1.101 ± 0.02a

48 1.744 ± 0.01 1.734 ± 0.02 1.718 ± 0.04 1.703 ± 0.03  1.583 ± 0.03a 1.483 ± 0.01a

72 1.692 ± 0.04 1.677 ± 0.01 1.650 ± 0.06 1.583 ± 0.06  1.420 ± 0.06a 1.300 ± 0.04a

Table 1  Absorbance values (n  = 3, mean ± SD) of HepG2/adriamycin cells treated with 
different concentrations of metformin

aP < 0.05 vs the blank group.

Adriamycin (μmol/L) 24 h 48 h 72 h

Control Metformin Control Metformin Control Metformin
0 1.434 ± 0.03  1.327 ± 0.04a 1.477 ± 0.08 1.357 ± 0.01 1.695 ± 0.08 1.507 ± 0.05a

0.01 1.280 ± 0.06  1.160 ± 0.01a 1.489 ± 0.03  1.314 ± 0.03a 1.505 ± 0.01 1.378 ± 0.07a

0.1 1.194 ± 0.10 1.111 ± 0.09 1.418 ± 0.01  1.213 ± 0.02a 1.453 ± 0.02 1.249 ± 0.04a

1 0.847 ± 0.02  0.662 ± 0.02a 0.661 ± 0.01 0.661 ± 0.06 0.753 ± 0.04 0.508 ± 0.04a

5 0.628 ± 0.08  0.458 ± 0.02a 0.358 ± 0.02  0.208 ± 0.03a 0.347 ± 0.03 0.194 ± 0.03a

10 0.531 ± 0.00  0.399 ± 0.01a 0.162 ± 0.01  0.062 ± 0.01a 0.122 ± 0.01 0.049 ± 0.01a

20 0.284 ± 0.01  0.162 ± 0.01a 0.143 ± 0.01  0.051 ± 0.00a 0.084 ± 0.01 0.027 ± 0.00a

Table 2  Effect of adriamycin combined with metformin on the proliferation of HepG2/adriamycin cells (n  
= 3, mean ± SD)

aP < 0.05 vs the control group. The proliferation of HepG2/adriamycin cells calculated with SPSS21.0 is presented as mean ± 
SD from CCK-8 assay in triplicate.
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the increasing dose of metformin, and the phosphory
lated p65 expression in the nucleus was also decreased. 
Metformin could down-regulate P-gp expression by 
inhibiting NF-kB activation in a dose- and time-depen
dent manner.

Synergistic effect of metformin plus NF-κB-siRNA
The synergistic effects of metformin combined with 
NF-κB siRNA in reversing MDR are shown in Figure 4. 
HepG2/ADM cells were divided into three groups: Untreat
ed cells, cells treated with metformin alone and those 
treated with metformin combined with NF-κB-siRNA. In 
the NF-κB-siRNA group, NF-κB-siRNA was transfected 
into HepG2/ADM cells for 24 h, and then cells were 
treated with 1 mmol/L metformin for 48 h. The levels of 
P-gp expression were 0.91 ± 0.24, 0.63 ± 0.13 and 0.22 
± 0.02 (F = 14.47, P = 0.005) in untreated, metformin 
and the metformin combined with NF-κB-siRNA groups, 
respectively. The expression of P-gp was significantly 

reduced in cells treated with metformin plus NF-κB-siRNA 
compared with that in cells only treated with metformin (t 
= 5.39, P = 0.006).

DISCUSSION
Recent advances in surgical techniques and interventional 
therapy have improved survival of HCC patients[6,7,29]. 
However, the emergence of MDR to a series of clinical 
chemotherapeutics with different structures or target 
sites severely blocks the successful management of 
HCC and still is a difficult problem to be solved in clinical 
practice[30,31]. MDR in HCC could result from several 
biochemical mechanisms including decreased drug influx, 
increased drug efflux, altered cell cycle checkpoints, 
altered drug targets, increased drug metabolism and/or 
resistance to drug-induced apoptosis. Therefore, it is 
very important to find safe and effective MDR reversal 
agents for HCC[32]. In the present study, metformin with 

LO2                 HepG2                HepG2/ADM

b

b

b

b

Re
la

tiv
e 

de
ns

ity

1.5

1.0

0.5

0.0

P-gp                       p-p65                        p65

b

b

b

Re
la

tiv
e 

de
ns

ity

3

20

1

0

mdr1                              NF-κB

b

b

Re
la

tiv
e 

to
 c

on
tr

ol

12

10

8

6

4

2

0

HepG2

HepG2/ADM

142 kd

65 kd

65 kd

42 kd

B

0               1               3.02

LO2            HepG2       HepG2/ADM

P-gp

β-actin

A

D

E

C

HepG2             HepG2/ADM

P-gp

p-p65

p65

β-actin

1                       3.67

1                       3.28

1                       0.44

Figure 1  The levels of P-glycoprotein, mdr1 and nuclear factor-κB expression in different cell lines. A and C: The levels of P-gp and NF-kB expression in 
HepG2 or HepG2/ADM cells were determined by Western blot. The number indicates the ratio of HepG2/ADM cells to HepG2 cells (n = 3, mean ± SD); B and D: The 
gray intensity images of Figure 1A and Figure 1C, respectively; E: The levels of mdr1 and NF-κB mRNA expression were determined by qRT-PCR. bP < 0.01 (n = 3, 
mean ± SD), compared with hepG2 or LO2 cell line. P-gp: P-glycoprotein; NF-kB: Nuclear factor-κB; ADM: Adriamycin.

142 kd

42 kd

Wu W et al . MDR in HCC



990 August 18, 2016|Volume 8|Issue 23|WJH|www.wjgnet.com

silencing NF-κB gene transcription was used to reverse 
MDR of HepG2/ADM cells with high NF-κB expression.

Anti-cancer drug efflux is one of the most common 
mechanisms of MDR of HCC cells, and it is mediated 
by ATP-binding cassette transporters[33,34], such as P-gp 
encoded by MDR1 gene, which is located downstream 
of the NF-κB signaling pathway. P-gp expression re
gulated by MDR1 is the most important and common 
cause of MDR, and weakened the apoptosis of cancer 
cells induced by chemotherapeutic drugs. Both P-gp 
expression and NF-κB activation are linked closely with 
HCC progression[35]. Usually NF-κB takes part in gene 
transcription by means of homodimers or heterodimers, 

such as p50/p65, p65/p65, and p65/Rel. In quiescent 
cells, they are predominantly cytoplasmic, associating 
with members of inhibitory IκB family and forming NF-
κB/IκB complexes without activity. Both P-gp and NF-kB 
at the protein or transcriptional level were significantly 
higher (Figure 1), with p65 expression decreasing in 
HepG2/ADM cells, indicating that abnormal P-gp and NF-
kB expression could associate with the MDR formation of 
HCC cells[20].

Metformin is a safe, low-cost drug, and therefore 
remains one of the most commonly prescribed drugs world
wide[16,36]. The anticancer effects of metformin indicate 
the possibility that certain diabetes-associated types of 
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Figure 2  Metformin enhances adriamycin-induced apoptosis of HepG2/adriamycin cells. Cell early apoptosis was measured by Annexin-V-PE/7-AAD double 
staining assay in triplicate. A: The blank group (untreated); B: The control group (only treated with adriamycin); C: The experiment group (treated with metformin plus 
adriamycin). AAD: AnnexinV apoptosis detection.
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Figure 3  Metformin down-regulates P-glycoprotein expression via the nuclear factor-κB signaling pathway. A: After HepG2/ADM cells were treated with 
different doses of metformin for 24 h, the levels of P-gp and p-p65 expression analyzed by Western blot were decreased in a dose-dependent manner, and the 
cytoplasma p65 increased in a dose-dependent manner; B: The gray intensity images of Figure 3A. aP < 0.05, bP < 0.01 vs the blank group (n = 3, mean ± SD); C: 
After HepG2/ADM cells were treated with 1 mmol/L metformin for different time periods, the levels of P-gp and p-p65 expression analyzed by Western blot were 
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cancer[37,38] may be circumvented, and metformin has 
anti-proliferative potential against cancer cells or revers
ing MDR in vitro and in vivo[39,40]. However, the precise 
molecular mechanisms whereby metformin works in 
cancer prevention remain multi-factorial and ill-defined. 
Metformin affected HepG2/ADM cell proliferation in a 
dose- and time-dependent manner (Table 1). Metformin 
at < 3 mmol/L had no significant impact on HepG2/ADM 
cells, but the cells treated with metformin between 3-10 
mmol/L were more sensitive to adriamycin with regard 
to promoting cell apoptosis (Figure 2) and inhibiting cell 
proliferation (Table 2), suggesting that metformin could 
increase the sensitivity of HepG2/ADM cells to anti-
cancer drugs.

There are few studies on the effect of metformin 
on MDR of HCC cells. siRNA strategy is a powerful 
technique to inhibit specific gene expression, which 
has highlighted the potential use of siRNA molecules to 
study gene function or explore new HCC therapeutic 
agents[41,42]. The expression of NF-κB gene transcription 
was inhibited by specific siRNA, which significantly down-
regulated P-gp and enhanced the chemosensitivity of 
HCC cells to doxorubicin, confirming the mechanism of 
decreasing P-gp via the NF-κB signaling pathway. The 
synergistic effects of metformin and NF-κB siRNA were 
found in HepG2/ADM cells with regard to cell proliferation 
inhibition, cell cycle arrest, and inducing cell apoptosis. 
These data confirm that the metformin could enhance 
the HepG2/ADM cells sensitivity to adriamycin and 
reverse MDR via the NF-κB signaling pathway (Figure 4).

In conclusion, the development of MDR still is one of 
major causes of HCC chemotherapy failure[43,44]. Although 
specific NF-κB siRNA is a powerful small molecule reagent 
designed to silence expression of NF-κB and MDR1/P-gp 
related to MDR to increase tumor cell sensitivity to anti-
cancer drugs, how to apply metformin plus interfering 
NF-κB activation for effective reversal of MDR of HCC 
cells still needs to be further explored.
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Research frontiers
Metformin could target AMP-activated protein kinase mammalian target of 
rapamycin pathway, suppress hypoxia-inducible factor-1α (HIF-1α) and trans
criptionally down-regulate P-gp and MDR-associated protein 1, suggesting that 
metformin may reverse MDR by targeting the AMP-activated protein kinase/
mammalian target of rapamycin/HIF-1α/P-gp and MDR-associated protein 1 
pathways. However, whether metformin plus nuclear factor-κB (NF-κB) inhibition 
might effectively reverse MDR of HCC cells remains to be explored.

Innovations and breakthroughs
Recently, there are few studies on the effects of metformin on MDR of HCC cells. 
In this study, the data suggested that the abnormal expression of MDR1/P-gp and 
NF-κB activation during HCC development were related to MDR formation, which 
might be down-regulated through inhibiting activation of the NF-κB signaling 
pathway with specific small interference RNA (siRNA). The combination of 
metformin with interfering NF-κB gene transcription could effectively reverse the 
MDR of HCC cells.

Applications
The abnormal expression of MDR1/P-gp in HCC was related to MDR formation, 
which could be down-regulated through inhibiting activation of the NF-κB 
signaling pathway with specific siRNA and increasing sensitivity of HCC cells to 
chemotherapy drugs. Interfering NF-κB activation with metformin is effective to 
reverse MDR of HCC cells. However, how to apply metformin plus interfering NF-
κB activation for effective reversal of MDR of HCC cells still needs to be explored.

Terminology
Metformin is a safe, low-cost drug. The anticancer effects of metformin 
indicate the possibility that certain diabetes-associated types of cancer may 
be circumvented. Indeed, many retrospective meta-analyses have shown that 
metformin possesses anti-cancer activities and decreases the incidence of 
primary cancer development in those taking metformin routinely, and a multitude 
of clinical cancer trials are actively assessing its benefits in non-diabetic 
population who have already developed cancer. However, the precise molecular 
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mechanisms whereby metformin works in cancer prevention remain multi-factorial 
and ill-defined.
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Abstract
This report describes a patient that developed recurrent 
metastatic hepatocellular carcinoma (HCC) to a supra
pancreatic lymph node four years after being treated for 
primary HCC via  complete left hepatectomy. Metastatic 
HCC was proven by pathologic confirmation. The report 
addresses the role of surgical resection as a treatment 
modality for recurrent HCC to solitary lymph nodes. The 
role of biological chemotherapy as adjuvant treatment is 
also addressed.

Key words: Hepatocellular carcinoma; Lymph node; 
Recurrence; Metastatic; Extrahepatic
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Core tip: Recurrence of primary hepatocellular carci
noma to a solitary extracellular site is a rare occurrence, 
especially after complete hepatic lobectomy for the 
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primary tumor. In this report we describe a case of 
recurrence to a solitary suprapancreatic lymph node 
four years after initial resection. This is the only report 
to describe such a recurrence this long after the primary 
resection. 

Caparelli ML, Roberts NJ, Braverman TS, Stevens RM, Broun 
ER, Allamaneni S. Metastatic recurrence to a solitary lymph node 
four years after hepatic lobectomy for primary hepatocellular 
carcinoma. World J Hepatol 2016; 8(23): 994-998  Available 
from: URL: http://www.wjgnet.com/1948-5182/full/v8/i23/994.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the fifth most com­
mon cancer in the world, with the highest prevalence 
rates occurring in the eastern hemisphere. However, 
there has been a rise in prevalence in the Western hemi­
sphere. It has been postulated that this pattern is due to 
higher incidence of hepatitis B and C virus seen outside 
of the United States[1]. Tumor staging and strategies 
for treatment of HCC have been well described with 
current guidelines following the recommendations of 
the 2010 AHPBA/SSO/SSAT consensus conference on 
HCC[2]. Current guidelines are primarily geared toward 
patients with primary resectable and non-resectable HCC. 
However, data is lacking with regard to the treatment 
of recurrent extrahepatic HCC. Systemic chemotherapy 
has proven to be of minimal benefit for patients with 
advanced, and recurrent extrahepatic HCC. There are 
current studies being conducted that support the use of 
multikinase inhibitors, including Sorafenib, as a viable 
option for patients with advanced and extrahepatic 
HCC[3].

It is well known that the most common type of re­
currence of HCC is intrahepatic. The most common sites 
for hematogenous spread are the lung, followed by the 
adrenal gland, and bone[4]. Metastases of HCC to lymph 
nodes (LN) are quite rare. In one report that included 
a subset of Japanese patients who underwent hepatic 
resection, the prevalence of lymphatic involvement was 
as low as 2.2%[5]. Another study showed that the 5-year 
survival rate for patients with lymph node metastasis 
is approximately 20%[6]. There have been few reports 
describing metastasis to LN that have been treated with 
surgical resection, and their results have been varied[7-11]. 
With this in mind, the importance of surgical resection of 
extrahepatic HCC recurrent to lymph nodes cannot be 
understated as a viable treatment modality. Interestingly, 
this is the first reported case where isolated lymph node 
metastasis has occurred greater than 3 years after initial 
hepatic resection. We describe a case of HCC recurrent 
to a solitary suprapancreatic lymph node treated by 
complete surgical resection.

CASE REPORT
The patient is a 67-year-old woman who presented with 
a suprapancreatic mass on magnetic resonance imaging 
(MRI). She initially presented 4 years prior with HCC of 
the left lobe of the liver measuring 10.8 cm × 7.4 cm × 9.5 
cm. She was asymptomatic at the time of the discovery 
and the tumor was found due to imaging studies prior 
to a recent thoracic aortic aneurysm repair. Interestingly 
she did not have known risk factors for developing HCC 
such as cirrhosis, chronic hepatitis, tobacco use, diabetes, 
nonalcoholic fatty liver disease, hemochromatosis, or 
alpha-1 antitrypsin deficiency. Laboratory findings at 
that time showed a alpha fetoprotein (AFP) level of 
119000 ng/mL. She subsequently underwent complete 
left hepatic lobectomy and had no complications post 
procedure. The patient was in remission for almost 4 
years, but had a steady increase in AFP, 177-883 ng/mL, 
from year 3 to 4. Serial computed tomography (CT) 
imaging showed no evidence of recurrence over that 
time period. Subsequent MRI showed a soft tissue 
mass medial to the right hepatic lobe/porta hepatis 
measuring 4.6 cm × 5.6 cm (Figure 1). CT guided biopsy 
of the mass revealed a poorly differentiated malignant 
neoplasm, favoring HCC. The patient had no history of 
viral hepatitis, alcoholic liver disease, jaundice, abdominal 
pain, weight loss, chronic cough, bloody stools, bone 
pain, or any other signs to suggest metastatic disease. 
She was subsequently taken to the operating room for en 
bloc resection of a large suprapancreatic retroperitoneal 
mass, celiac and portal lymphadenectomy. Pathology 
showed the suprapancreatic mass to be consistent 
with HCC, high grade within a lymph node structure. 
Portal and celiac axis lymph nodes were negative for 
metastasis. Interestingly, immunohistochemical stains for 
the recurrent carcinoma showed not only tumor markers 
that confirm hepatocellular origin, but might suggest a 
more aggressive tumor - staining positive for cytokeratin 
19 (CK19), glypican 3 (G3) and hepatocyte paraffin 
1 (HP1). Microscopic pathologic figures are shown in 
Figures 2 and 3. The patient’s post-operative course has 
been uncomplicated and at eight months post op she is 
disease free. Current AFP level is 2.2 ng/mL.

DISCUSSION
The recurrence of HCC can be classified as early or late 
phase[12]. Early phase recurrence typically occurs within 
the first two years post-resection, and is related to 
aggressive features of the primary tumor such as high 
tumor grade, local invasion, and multifocal tumors. Late 
recurrence occurs more than two years after resection 
and is related to de novo tumor formation, typically 
in patients with cirrhotic liver disease. The fact that 
our patient recurred to an extrahepatic LN nearly four 
years post-surgery is remarkable, and of the first to be 
reported this late, post-resection. The initial tumor was 
without aggressive characteristics, as it was moderately 
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Figure 1  Suprapancreatic mass. The left panel (A) shows an axial post contrast T1 fat suppressed sequence that demonstrates an arterial phase enhancing mass 
medial to the liver; the right panel (B) shows an axial T2 HASTE sequence demonstrating a mass with increased T2 signal medial to the liver. T: Tumor.
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Figure 3  Resected recurrence. A: The H and E-stained shows a tiny area of likely LN at one end; B: Shows obvious tumor cells nests; On the right-hand set of IHC 
stained split full-height images, both the main mass (F-H); and obvious nodal tumor (LN2) (C-E), are strongly positive on G3 (C),  CK19 (D), and HP1 (E) stains. Mass: 
Main mass; LN: Lymph node; G3: Glypican 3; CK19: Cytokeratin 19; HP1: Hepatocyte paraffin 1.
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Figure 2  Initial hepatic lobectomy. On the left-hand set of H and E-stained quarter panel images, the upper left two-image combination quarter panel (A) shows 
the trabecular architecture, the trabeculae as “T”; the upper right H and E quarter panel (B) shows L-V; the lower H and E quarter panels show high power views of 
solid pattern tumor with focal geographic necrosis [lower left (F) as “N”] and numerous mitoses [lower right (G) with “M” times 4]; on the right-hand set of IHC-stained 
split full-height images, the mass, along the bottom (H-J) show negative G3 (H), CK19 (I), HP1 (J); the L-V, along the top (C-E) with a similar pattern, but with weak 
but convincing HP1 positivity. Both HP1 stains are inset with 100 × high power images (100 ×). Arrows on the L-V IHC (C and D) stains indicate the tumor (opposite 
vessel wall). L-V: Lymph-vascular tumor; Mass: Main mass; LN: Lymph node; G3: Glypican 3; CK19: Cytokeratin 19; HP1: Hepatocyte paraffin 1; T: Tumor.
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differentiated and without local invasion. Additionally, 
the initial tumor stained negative for CK19, G3 and was 
only weakly positive for HP1 in the lympho-vascular 
invasive sample as seen in Figure 1. Interestingly, the 
recurrent tumor was positive for these three biomarkers, 
suggesting hepatocellular origin and a more aggres­
sive tumor[13]. Clonal selection, therapeutic selection, or 
possibly both may explain this finding. 

LN status is essential to the staging of cancers, 
including HCC. The presence of LN metastasis is asso­
ciated with poorer survival and higher risk of tumor 
recurrence[4]. Although the most common intra- and 
extra-hepatic recurrence is to liver and lung respectively, 
metastases to LNs are not that uncommon. There have 
been two reports that showed LN metastases in 28% 
and 25% of autopsied cases of HCC, respectively[14,15]. 
However, a more recent study of surgical patients in 
Japan showed only 2.2% LN involvement in patients 
that underwent hepatic resection[5]. This discrepancy 
may be due to the fact that more advanced HCC cases 
that are more likely to have extrahepatic metastases are 
less likely to undergo resection. This finding illuminates 
the importance LN dissection in hepatic surgery. LN 
dissection is not the current standard when performing 
hepatic resection for HCC. In a study by Ercolani et al[16] 
the role of lymphadenectomy was addressed. In 40 
patients with HCC the incidence of LN metastases was 
7.5%. It was also found that the most common site of 
LN metastases from HCC is the hepatic pedicle node, 
followed by the retropancreatic space, and common 
hepatic artery station. The authors concluded that 
regional lymphadenectomy is a safe procedure after 
liver resection; however, this is yet to become common 
practice.

Several case reports have been published on the 
findings of metastatic HCC to LNs[7-11]. Patients in these 
reports often had cirrhosis, and all but one of these 
patients underwent resection with varied short-term 
survival results. One report described a patient with a 
solitary suprapancreatic LN mestastasis that underwent 
pancreaticoduodenectomy and had reported disease free 
survival for 27 mo. Another patient with LN metastases 
to two paraaortic mediastinal LNs underwent complete 
resection, but had recurrence and died 13 mo later[10]. 
It is reasonable to argue liver disease, and multiple LN 
involvement may be factors for worse prognosis post LN 
resection.

Our patient appears to be an excellent candidate 
for resection, as she had a solitary LN, and is without 
cirrhotic, viral or alcoholic liver disease. In addition, ad­
juvant treatment with sorafenib - an oral multikinase 
inhibitor that has been shown to suppress tumor growth 
and angiogenesis by inhibiting the Raf/MEK/ERK signal­
ing pathway and receptor kinases, such as VEGFR-1, 
VEGFR-2, VEGFR-3, and PDGFβ - should be considered[3]. 
Sorafenib was shown to increase survival in patients with 
advanced HCC in the SHARP (Sorafenib HCC Assessment 
Randomized Protocol) trial. However, data is lacking 
on whether this multikinase inhibitor is useful in the 

treatment of recurrent extrahepatic HCC. One recent 
study showed that the therapeutic effect of sorafenib 
was comparable in advanced HCC with or without extra­
hepatic metastasis[3]. It may be beneficial to initiate 
adjuvant treatment in patients with recurrent LN involve­
ment, but further studies need to be performed prior to 
this becoming standard.

COMMENTS
Case characteristic
A 67-year-old woman who presented with a suprapancreatic mass on magnetic 
resonance imaging (MRI). The patient was asymptomatic at the time of 
presentation. Imaging studies were performed because of increased serum alpha 
fetoprotein levels led to increase suspicion for recurrence of primary hepato
cellular carcinoma (HCC) resected four years prior.

Clinical diagnosis
The patient was asymptomatic at the time of presentation.

Differential diagnosis
Recurrent primary HCC, metastatic cancer, reactive lymphadenopathy, primary 
tumor of unknown origin, lymphoma.

Laboratory diagnosis
Elevated alpha fetoprotein level of 883 ng/mL.

Imaging diagnosis
MRI showed a soft tissue mass medial to the right hepatic lobe/porta hepatis 
measuring 4.6 cm × 5.6 cm.

Pathological diagnosis
HCC, high grade within a lymph node structure.

Treatment
Surgical resection of lesion.

Related reports
HCC is a primary liver cancer. HCC typically does not recur to an extrahepatic 
solitary lymph node after primary resection.

Term explanation
HCC is a primary liver cancer. It is the fifth most common human cancer worldwide.

Experiences and lessons
Surgical resection of HCC recurrence to a solitary lymph node is a viable option 
and may also be curative. Long term follow-up of this patient will further illuminate 
the possibility of cure.

Peer-review
An interesting case presentation with a long period disease-free up to 4 years. 
It should be benefit to the knowledge of the hepatologists and keep in mind for 
the importance of clinical follow-up after extensive hepatectomy.
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